Advertisement

Experimental Investigations of Abrasive Waterjet Machining Parameters on Titanium Alloy Ti-6Al-4V Using RSM and Evolutionary Computational Techniques

  • A. GnanavelbabuEmail author
  • P. Saravanan
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)

Abstract

In this research, an experimental investigation has been carried out on the Abrasive Water Jet Machining (AWJM) process for the machining of Grade 5 Titanium alloy (Ti-6Al-4V) using the Response Surface Methodology (RSM). Process parameters such as Mesh size (M), Abrasive Flow Rate (AFR), Water Pressure (WP) and Traverse Speed (TS) have been considered. Their influence on the kerf taper angle (θ) and surface roughness (Ra) has been obtained. An L29 Box-Behnken experimental design has been used in this experiment. Regression models have been developed for correlating the data generated using experimental results. Evolutionary optimization techniques like Particle Swarm Optimization (PSO), Cuckoo Search Algorithm (CSA) and Simulated Annealing (SA) are attempted for the considered AWJM process. CSA outperformed all other algorithms by its optimal solution. The confirmatory experiments have been carried out to validate the predicted parameters from the CSA which effectively produced minimized experimental response.

Keywords

Waterjet Ti-6Al-4V Roughness Kerf RSM Optimization 

Notes

Acknowledgements

The authors acknowledge the financial support for Research Consumables rendered by DST PURSE Phase II.

References

  1. 1.
    Ali, M.H., Ansari, M.N.M., Khidhir, B.A., Mohamed, B., Oshkour, A.A.: Simulation machining of titanium alloy (Ti-6Al-4V) based on the finite element modeling. J. Braz. Soc. Mech. Sci. Eng. 36(2), 315–324 (2014)CrossRefGoogle Scholar
  2. 2.
    Elias, C.N., Lima, J.H.C., Valiev, R., Meyers, M.A.: Biomedical applications of titanium and its alloys. JOM 60(3), 46–49 (2008)CrossRefGoogle Scholar
  3. 3.
    Rajurkar, K.P., Zhu, D., McGeough, J.A., Kozak, J., De Silva, A.: New developments in electro-chemical machining. CIRP Ann. 48(2), 567–579 (1999)CrossRefGoogle Scholar
  4. 4.
    Ho, K.H., Newman, S.T.: State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 43(13), 1287–1300 (2003)CrossRefGoogle Scholar
  5. 5.
    Dubey, A.K., Yadava, V.: Laser beam machining—a review. Int. J. Mach. Tools Manuf. 48(6), 609–628 (2008)CrossRefGoogle Scholar
  6. 6.
    Thoe, T.B., Aspinwall, D.K., Wise, M.L.H.: Review on ultrasonic machining. Int. J. Mach. Tools Manuf. 38(4), 239–255 (1998)CrossRefGoogle Scholar
  7. 7.
    Gnanavelbabu, A., Saravanan, P., Rajkumar, K., Karthikeyan, S., Baskaran, R.: Effect of abrasive waterjet machining parameters on hybrid AA6061-B4C-CNT composites. Mater. Today: Proc. 5(5), 13438–13450 (2018)Google Scholar
  8. 8.
    Gnanavelbabu, A., Rajkumar, K., Saravanan, P.: Investigation on the cutting quality characteristics of abrasive water jet machining of AA6061-B4C-hBN hybrid metal matrix composites. Mater. Manuf. Processes. 33(12), 1313–1323 (2018)CrossRefGoogle Scholar
  9. 9.
    Babu, M.K., Chetty, O.K.: A study on recycling of abrasives in abrasive water jet machining. Wear 254(7–8), 763–773 (2003)CrossRefGoogle Scholar
  10. 10.
    Shanmugam, D.K., Masood, S.H.: An investigation on kerf characteristics in abrasive waterjet cutting of layered composites. J. Mater. Process. Technol. 209(8), 3887–3893 (2009)CrossRefGoogle Scholar
  11. 11.
    Wang, J.: Abrasive waterjet machining of polymer matrix composites–cutting performance, erosive process and predictive models. Int. J. Adv. Manuf. Technol. 15(10), 757–768 (1999)CrossRefGoogle Scholar
  12. 12.
    Hascalik, A., Çaydaş, U., Gürün, H.: Effect of traverse speed on abrasive waterjet machining of Ti–6Al–4V alloy. Mater. Des. 28(6), 1953–1957 (2007)CrossRefGoogle Scholar
  13. 13.
    Çaydaş, U., Hascalık, A.: A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. J. Mater. Process. Technol. 202(1–3), 574–582 (2008)CrossRefGoogle Scholar
  14. 14.
    Azmir, M.A., Ahsan, A.K.: A study of abrasive water jet machining process on glass/epoxy composite laminate. J. Mater. Process. Technol. 209(20), 6168–6173 (2009)CrossRefGoogle Scholar
  15. 15.
    Gnanavelbabu, A., Saravanan, P., Rajkumar, K., Karthikeyan, S.: Experimental investigations on multiple responses in abrasive waterjet machining of Ti-6Al-4V alloy. Mater. Today: Proc. 5(5), 13413–13421 (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Industrial EngineeringCEG Campus, Anna UniversityChennaiIndia

Personalised recommendations