Micro-hardness Improvement of HSS Using Tungsten Tool Through Micro-electrical Discharge Process

  • S. MohantyEmail author
  • Avijit Roy
  • Brij Bhushan
  • A. K. Das
  • Amit Rai Dixit
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)


In the present state of work, a tungsten tool is used for alloying of HSS workpiece material by depositing a hard carbide layer of tungsten and iron through micro-electrical discharge machining (μ-EDM) process. Commercial EDM oil was used as a dielectric that reacts with the tungsten tool electrode to form tungsten carbide over HSS work material. The micro-hardness values and the Energy Dispersive Spectroscopy (EDS) plots proved the appearance of carbide phase of the tool on HSS. X-ray diffraction (XRD) plot suggest the formation of hard carbide phase of tungsten (tungsten carbide) and iron (cementite) on the alloyed surface. The diffusion of tool and dielectric material from the base material (HSS) towards the transition region has been studied by EDS reports.


Micro-hardness EDS Μ-EDM XRD Diffusion 


  1. 1.
    Prakash, V., Kumar, P., Singh, P.K., Hussain, M., Das, A.K., Chattopadhyaya, S.: Micro-electrical discharge machining of difficult-to-machine materials: a review. In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. (2017)CrossRefGoogle Scholar
  2. 2.
    Abbas, N.M., Solomon, D.G., Bahari, M.F.: A review on current research trends in electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 47(7), 1214–1228 (2007)CrossRefGoogle Scholar
  3. 3.
    Kumar, S., Singh, R., Singh, T.P., Sethi, B.L.: Surface modification by electrical discharge machining: a review. J. Mater. Process. Technol. 209(8), 3675–3687 (2009)CrossRefGoogle Scholar
  4. 4.
    Prakash, V., Shubham, Kumar, P., Singh, P.K., Das, A.K., Chattopadhyaya, S., Dixit, A.R.: Surface alloying of miniature components by micro-electrical discharge process. Mater. Manuf. Process. 1–11 (2017)Google Scholar
  5. 5.
    Aspinwall, D.K., Dewes, R.C., Lee, H.G., Simao, J., McKeown, P.A.: Electrical discharge surface alloying of Ti and Fe workpiece materials using refractory powder compact electrodes and Cu wire. CIRP Ann. Manuf. Technol. 52(1), 151–156 (2003)CrossRefGoogle Scholar
  6. 6.
    Bleys, P., Kruth, J.P., Lauwers, B., Schacht, B., Balasubramanian, V., Froyen, L., Van Humbeeck, J.: Surface and sub-surface quality of steel after EDM. Adv. Eng. Mater. 8(1–2), 15–25 (2006)CrossRefGoogle Scholar
  7. 7.
    Kumar, S., Singh, T.P., Sethi, B.L.: Surface alloying of OHNS die steel by EDM process using inconel electrode. Int. J. Mach. Mach. Mater. 6(3–4), 176–193 (2009)Google Scholar
  8. 8.
    Rahang, M., Patowari, P.K.: Parametric optimization for selective surface modification in EDM using Taguchi analysis. Mater. Manuf. Process. 31(4), 422–431 (2016)CrossRefGoogle Scholar
  9. 9.
    Gill, A.S., Kumar, S.: Surface roughness and microhardness evaluation for EDM with Cu–Mn powder metallurgy tool. Mater. Manuf. Process. 31(4), 514–521 (2016)CrossRefGoogle Scholar
  10. 10.
    Mohanty, S., Kumar, V., Das, A.K., Dixit, A.R.: Surface modification of Ti-alloy by micro-electrical discharge process using tungsten disulphide powder suspension. J. Manuf. Process. 37, 28–41 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology (ISM)DhanbadIndia

Personalised recommendations