Advertisement

Parametric Optimization of Micro-electrical Discharge Drilling on Titanium

  • Siddhartha KarEmail author
  • Promod Kumar Patowari
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)

Abstract

This paper aims to perform an experimental study of drilling micro-holes on titanium grade 2 alloy using micro-electrical discharge machining (µEDM) process. Key process parameters such as capacitance, feed rate (FR) and tool rotation speed (TRS) are varied during machining. Machining time, diameter at entry and diameter at exit are the response measures evaluated to examine the effect of chosen process parameters on them. A Taguchi L-9 orthogonal array design of experiment has been employed to frame the parametric combination of the process parameters, based on which experiments are conducted. Furthermore, analysis of variance (ANOVA) is carried out to find significant process parameters. Deviation of 14.16, 0.03 and 2.14% is observed between the experimental and predicted results at optimum condition of machining time (104 pF, 15 µm/s and 1000 rpm), diameter at entry (102 pF, 5 µm/s and 500 rpm) and diameter at exit (102 pF, 10 µm/s and 1500 rpm), respectively.

Keywords

Drilling Micro-holes Machining time Diameter Titanium 

References

  1. 1.
    Qudeiri, J.E.A., Mourad, A.-H.I., Ziout, A., Abidi, M.H., Elkaseer, A.: Electric discharge machining of titanium and its alloys: review. Int. J. Adv. Manuf. Technol. 96(1–4), 1319–1339 (2018).  https://doi.org/10.1007/s00170-018-1574-0CrossRefGoogle Scholar
  2. 2.
    Kar, S., Patowari, P.K.: Electrode wear phenomenon and its compensation in micro electrical discharge milling: a review. Mater. Manuf. Process. 33(14), 1491–1517 (2018).  https://doi.org/10.1080/10426914.2018.1453144CrossRefGoogle Scholar
  3. 3.
    Wansheng, Z., Zhenlong, W., Shichun, D., Guanxin, C., Hongyu, W.: Ultrasonic and electric discharge machining to deep and small hole on titanium alloy. J. Mater. Process. Technol. 120(1–3), 101–106 (2002).  https://doi.org/10.1016/S0924-0136(01)01149-9CrossRefGoogle Scholar
  4. 4.
    Hasçalık, A., Çaydaş, U.: Electrical discharge machining of titanium alloy (Ti–6Al–4 V). Appl. Surf. Sci. 253(22), 9007–9016 (2007).  https://doi.org/10.1016/j.apsusc.2007.05.031CrossRefGoogle Scholar
  5. 5.
    Pradhan, B.B., Masanta, M., Sarkar, B.R., Bhattacharyya, B.: Investigation of electro-discharge micro-machining of titanium super alloy. Int. J. Adv. Manuf. Technol. 41(11–12), 1094–1106 (2009).  https://doi.org/10.1007/s00170-008-1561-yCrossRefGoogle Scholar
  6. 6.
    Kibria, G., Sarkar, B.R., Pradhan, B.B., Bhattacharyya, B.: Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy. Int. J. Adv. Manuf. Technol. 48(5–8), 557–570 (2010).  https://doi.org/10.1007/s00170-009-2298-yCrossRefGoogle Scholar
  7. 7.
    Azad, M.S., Puri, A.B.: Simultaneous optimisation of multiple performance characteristics in micro-EDM drilling of titanium alloy. Int. J. Adv. Manuf. Technol. 61(9–12), 1231–1239 (2012).  https://doi.org/10.1007/s00170-012-4099-yCrossRefGoogle Scholar
  8. 8.
    Meena, V.K., Azad, M.S.: Grey relational analysis of micro-EDM machining of Ti-6Al-4V alloy. Mater. Manuf. Process. 27(9), 973–977 (2012).  https://doi.org/10.1080/10426914.2011.610080CrossRefGoogle Scholar
  9. 9.
    Kumar, S., Singh, R., Batish, A., Singh, T.P.: Multi-objective parametric optimization using the grey-taguchi approach for powder mixed electric discharge machining of grade-II titanium alloy with cryogenically treated electrodes. Indian J. Eng. Mater. Sci. 24(5), 339–350 (2017)Google Scholar
  10. 10.
    Baroi, B.K., Kar, S., Patowari, P.K.: Electric discharge machining of titanium grade 2 alloy and its parametric study. Mater. Today: Proc. 5(2), 5004–5011 (2018).  https://doi.org/10.1016/j.matpr.2017.12.078CrossRefGoogle Scholar
  11. 11.
    Jahan, M.P., Wong, Y.S., Rahman, M.: A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator. J. Mater. Process. Technol. 209(4), 1706–1716 (2009).  https://doi.org/10.1016/j.jmatprotec.2008.04.029CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of Technology SilcharAssamIndia

Personalised recommendations