In Silico Approaches for Unearthing Bacterial Quorum-Sensing Inhibitors Against Pathogenic Bacteria

  • Shrikant Pawar
  • Pallaval Veera Bramhachari
  • Chandrajit LahiriEmail author


The bacterial phenotypic traits of biofilm formation, bioluminescence, swarming motility, and even virulence are being highly influenced by the phenomenon of cell density-dependent gene regulation a.k.a. quorum sensing (QS) through which the bacteria communicate within themselves. Essentially, QS is an intracellular signaling system which are different for the different gram characters of bacteria. While gram-negative bacteria use chemical autoinducer molecules like acyl-homoserine lactones (AHLs) for such signaling, the gram-positive bacteria use peptide-based signaling systems. These quorum-sensing peptides (QSPs) can initiate a signaling cascade of events via two-component system or even by direct binding to transcription factors. After the detection of QSPs by bacteria, response regulators or transcriptional factors are activated, which further stimulates change in the target gene expression. Owing to the therapeutic potential of the AHLs and QSPs as drug targets, different in silico approaches were utilized for the identification of inhibitors and their modeling which can help in combatingthe respective bacterial pathogenicity. Thus, certain group of researchers also developed machine learning tools based on support vector machine (SVM) and hidden Markov models (HMM) for the identification of novel and effective biofilm inhibitory peptides (BIPs), while others used in silico approaches for predicting and designing of antibiofilm peptides usingbidirectional recursive neural network (BRNN) and Random Forest (RF) algorithms. Moreover, biological network visualization techniques and analysis enabled the identification of QSPs in different bacteria using related information from the curated databases. To this end, identification of the binding pocket(s), motif search, and other physicochemical properties will help in predicting the three-dimensional structure of such target. Furthermore, ultra-high-throughput screening is another approach which unveils QS inhibitors (QSI) based on the characterization of natural products and screening for naturally occurring enzymes. This review specifically focuses on all such in silico approaches in predicting QSI in different bacterial species. Such in silico QSI predictions and their docking onto QS targets can help to shape up a promising future for making newer therapeutic options available against different pathogenic bacteria.


Quorum sensing (QS) Inhibitors Bioinformatics 



The author acknowledges the support of Sunway University, Selangor, Malaysia, for providing the computational facilities and wishes to thank Rohit Mishra for the valuable contribution in gathering the articles for the concept provided.

Author Contributions

CL conceived the concepts, planned, and designed the article. SP primarily wrote the manuscript. This was further revamped by CL followed by PVB for final checking.


  1. Alessandro V, Martin F (2008) Modeling the quorum sensing regulatory network of human-pathogenic Pseudomonas aeruginosa. Biotechnol Prog. Scholar
  2. Al-Khayyat MZ, Al-Dabbagh AG (2016) In silico prediction and docking of tertiary structure of LuxI, an inducer synthase of Vibrio fischeri. Rep Biochem Mol Biol 4(2):66–75PubMedPubMedCentralGoogle Scholar
  3. Amano M et al (1998) Identification of the major allergens in wheat flour responsible for baker’s asthma. Biochem J 330(Pt. 3):1229–1234PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baker-Austin C, Potrykus J, Wexler M, Bond PL, Dopson M (2010) Biofilm development in the extremely acidophilic archaeon Ferroplasma. acidarmanus Fer1. Extremophiles 14:485–491. Scholar
  5. Barrett M, Udani J (2011) A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control. Nutr J 10:24PubMedPubMedCentralCrossRefGoogle Scholar
  6. Benkert P, Kunzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37:W510–W514PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bodor A, Elxnat B, Thiel V, Schulz S, Wagner-Dobler I (2008) Potential for luxS related signalling in marine bacteria of autoinducer-2 in the genus Shewanella. BMC Microbiol 8:1–9. Scholar
  8. Cheng J, Randall A, Sweredoski M, Baldi P (2005) SCRATCH: a protein structure and structural feature prediction server. Nucl Acids Res 33:W72–W76PubMedCrossRefPubMedCentralGoogle Scholar
  9. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322PubMedPubMedCentralCrossRefGoogle Scholar
  10. DasSarma S, DasSarma P (2006) Encyclopedia of life sciences. Wiley, London. HalophilesGoogle Scholar
  11. De Jesus AJ, Allen TW (2013) The role of tryptophan side chains in membrane protein anchoring and hydrophobic mismatch. Biochim Biophys Acta 1828(2):864–876. Pmid:22989724PubMedCrossRefPubMedCentralGoogle Scholar
  12. Donaldson S (2013) Effect of Lucinactant on mucus clearance in cystic fibrosis lung disease,
  13. Dong YH, Wang LY, Zhang LH (2007) Quorum-quenching microbial infections: mechanisms and implications. Philos Trans R Soc Lond Ser B Biol Sci 362(1483):1201–1211. Pmid:17360274CrossRefGoogle Scholar
  14. Engebrecht J, Silverman M (1987) Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. Nucl Acids Res 15:10455–10467PubMedCrossRefPubMedCentralGoogle Scholar
  15. Fjell C et al (2007) AMPer: a database and an automated discovery tool for antimicrobial peptides. Bioinformatics 23:1148–1155PubMedCrossRefPubMedCentralGoogle Scholar
  16. Fox JL (2013) Antimicrobial peptides stage a comeback. Nat Biotechnol 31:379–382. Scholar
  17. Garsin DA (2004) Microbiology. Peptide signals sense and destroy target cells. Science 306(5705):2202–2203. pmid:15619588PubMedCrossRefPubMedCentralGoogle Scholar
  18. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607CrossRefGoogle Scholar
  19. Giacometti A, Cirioni O, Gov Y, Ghiselli R, Del Prete MS, Mocchegiani F, Saba V, Orlando F, Scalise G, Balaban N, Dell’Acqua G (2003) RNA III inhibiting peptide inhibits in vivo biofilm formation by drug-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47(6):1979–1983PubMedPubMedCentralCrossRefGoogle Scholar
  20. Guo X, Zhang G, Liu X, Ma K, Dong X (2011) Detection of the quorum sensing signals in methanogenic archaea. Wei Sheng Wu Xue Bao 51(9):1200–1204. Pmid:22126075PubMedPubMedCentralGoogle Scholar
  21. Gupta S, Sharma AK, Jaiswal SK, Sharma VK (2016) Prediction of biofilm inhibiting peptides: an in silico approach. Front Microbiol.
  22. Haag AF, Kerscher B, Dall’Angelo S, Sani M, Longhi R, Baloban M (2012) Role of cysteine residues and disulfide bonds in the activity of a legume root nodule-specific, cysteine-rich peptide. J Biol Chem 287(14):10791–10798. Pmid:22351783PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Micro 2:95–108CrossRefGoogle Scholar
  24. Havarstein LS, Hakenbeck R, Gaustad P (1997) Natural competence in the genus Streptococcus: evidence that streptococci can change phenotype by interspecies recombinational exchanges. J Bacteriol 179(21):6589–6594. Pmid:9352904PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112(9):1300–1307PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22(15):3803–3815PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148(Pt 1):87–102PubMedPubMedCentralCrossRefGoogle Scholar
  28. Huang Y, Zeng Y, Yu Z, Zhang J, Feng HL, Lin X (2013) In silico and experimental methods revealed highly diverse bacteria with quorum sensing and aromatics biodegradation systems--a potential broad application on bioremediation. Bioresour Technol 148:311–316PubMedCrossRefPubMedCentralGoogle Scholar
  29. Hwang S, Kim CY, Ji S-G, Go J, Kim H, Yang S, Kim HJ, Cho A, Yoon SS, Lee I (2016) Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa. Sci Rep 6:26223PubMedPubMedCentralCrossRefGoogle Scholar
  30. Jimenez JC, Federle MJ (2014) Quorum sensing in group a Streptococcus. Front Cell Infect Microbiol 4:127. Pmid:25309879PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen bonded and geometrical features. Biopolymers 22(12):2577–2637PubMedCrossRefPubMedCentralGoogle Scholar
  32. Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258. Scholar
  33. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protocols 4(3):363–371PubMedCrossRefPubMedCentralGoogle Scholar
  34. Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H (2007) A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318(5850):652–655. Pmid:17962566PubMedCrossRefPubMedCentralGoogle Scholar
  35. Krämer R, Jung K (2010) Bacterial signaling. Wiley-VCH/John Wiley, Weinheim/ChichesterGoogle Scholar
  36. Kumar S, Kolodkin-Gal I, Engelberg-Kulka H (2013) Novel quorum-sensing peptides mediating interspecies bacterial cell death. MBio 4(3):e00314–e00313. pmid:23736285PubMedPubMedCentralCrossRefGoogle Scholar
  37. Lahiri C (2018) Quorum sensing complexity of the gut enterobacteria Escherichia coli and Salmonella enterica. In: Implication of quorum sensing system in biofilm formation and virulence. Springer, Singapore, pp 233–248CrossRefGoogle Scholar
  38. Lata S et al (2010) AntiBP2: improved version of antibacterial peptide prediction. BMC Bioinform 11(Suppl. 1):S19CrossRefGoogle Scholar
  39. Lebeaux D, Ghigo JM, Beloin C (2014) Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78:510–543. Scholar
  40. Lynn D et al (2004) Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics 56:170–177PubMedCrossRefPubMedCentralGoogle Scholar
  41. Magnan CN, Baldi P (2014) SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics (Oxf) 30(18):2592–2597. Scholar
  42. Manefield M, de Nys R, Naresh K, Roger R, Givskov M, Peter S, Kjelleberg S (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145(2):283–291CrossRefGoogle Scholar
  43. Marawan A, Stefanie B, Feng W (2013) Enzo a. in silico investigation of lactone and thiolactone inhibitors in bacterial quorum sensing using molecular modeling. Biomolecules arXiv 1305:3691Google Scholar
  44. Medigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin P, Cheung F, Cruveiller S, D’Amico S, Duillo A et al (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas. haloplanktis TAC125. Genome Res 15:1325–1335. Scholar
  45. Michiels J, Dirix G, Vanderleyden J, Xi C (2001) Processing and export of peptide pheromones and bacteriocins in Gram-negative bacteria. Trend Microbiol 9(4):164–168. Pmid:11286880CrossRefGoogle Scholar
  46. Mihăṣan M (2010a) Basic protein structure prediction for the biologist: a review. Arch Biol Sci Belgrade 62(4):857–871CrossRefGoogle Scholar
  47. Mihăṣan M (2010b) Basic protein structure prediction for the biologist: a review. Arch Biol Sci 62(4):857–871CrossRefGoogle Scholar
  48. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. Pmid:11544353CrossRefGoogle Scholar
  49. Mohammed Zaghlool Saeed Al-Khayyat, Ammar Ghanem Ameen Al-Dabbagh (2016a) In silico prediction and docking of tertiary structure of LuxI, an inducer synthase of Vibrio fischeri. Rep Biochem Mol Biol 4(2)Google Scholar
  50. Mohammed Zaghlool Saeed Al-Khayyat, Ammar Ghanem Ameen Al-Dabbagh (2016b) In silico prediction and docking of tertiary structure of LuxI, an inducer synthase of Vibrio fischeri. Rep Biochem Mol Biol 4(2)Google Scholar
  51. Montgomery K, Charlesworth J, LeBard R, Visscher P, Burns B (2013) Quorum sensing in extreme environments. Life 3(1):131–148PubMedPubMedCentralCrossRefGoogle Scholar
  52. Mooney C et al (2006) Protein structural motif prediction in multidimensional ø-ψ space leads to improved secondary structure prediction. J Comput Biol 13:1489–1502PubMedCrossRefPubMedCentralGoogle Scholar
  53. Mooney C et al (2012) Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PLoS One 7:E45012PubMedPubMedCentralCrossRefGoogle Scholar
  54. Mooney C, Haslam NJ, Holton TA, Pollastri G, Shields DC (2013) PeptideLocator: prediction of bioactive peptides in protein sequences. Bioinformatics 29(9):1120–1126PubMedCrossRefPubMedCentralGoogle Scholar
  55. Nakayama J, Tanaka E, Kariyama R, Nagata K, Nishiguchi K, Mitsuhata R et al (2007) Siamycin attenuates fsr quorum sensing mediated by a gelatinase biosynthesis-activating pheromone in Enterococcus faecalis. J Bacteriol 189(4):1358–1365. Pmid:17071762PubMedCrossRefPubMedCentralGoogle Scholar
  56. Nakayama J, Uemura Y, Nishiguchi K, Yoshimura N, Igarashi Y, Sonomoto K (2009) Ambuic acid inhibits the biosynthesis of cyclic peptide quormones in gram-positive bacteria. Antimicrob Agents Chemother 53(2):580–586. Pmid:19015326PubMedCrossRefPubMedCentralGoogle Scholar
  57. Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104(1):313–322. pmid:5473898PubMedPubMedCentralGoogle Scholar
  58. Nell MJ et al (2006) Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and antimicrobial activities for therapeutic application. Peptides 27:649–660. Scholar
  59. Nichols J, Johnson M, Chou C, Kelly R (2009) Temperature, not LuxS, mediates AI-2 formation in hydrothermal habitats. FEMS Microbiol Ecol 68:173–181. Scholar
  60. Nishiguchi K, Nagata K, Tanokura M, Sonomoto K, Nakayama J (2009) Structure-activity relationship of gelatinase biosynthesis-activating pheromone of Enterococcus faecalis. J Bacteriol 191(2):641–650. pmid:18996993PubMedCrossRefPubMedCentralGoogle Scholar
  61. Ong ZY, Gao SJ, Yang YY (2013) Short synthetic β-sheet forming peptide Amphiphiles as broad Spectrum antimicrobials with Antibiofilm and endotoxin neutralizing capabilities. Adv Funct Mater 23:3682–3692. Scholar
  62. Paggi RA, Martone CB, Fuqua C, De Castro RE (2003) Detection of quorum sensing signals in the haloalkaliphilic archaeon Natronococcus occultus. FEMS Microbiol Lett 221(1):49–52. Pmid:12694909PubMedCrossRefPubMedCentralGoogle Scholar
  63. Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68:223–240. Scholar
  64. Park J, Jagasia R, Kaufmann GF, Mathison JC, Ruiz DI, Moss JA et al (2007) Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol 14(10):1119–1127. Pmid:17961824PubMedPubMedCentralCrossRefGoogle Scholar
  65. Pawar S, Lahiri C (2018) Quorum sensing: an imperative longevity weapon in bacteria. Afr J Microbiol Res 12(4):96–104CrossRefGoogle Scholar
  66. Pawar S, Ashraf MI, Mujawar S, Mishra R, Lahiri C (2018) In silico identification of the indispensable quorum sensing proteins of multidrug resistant Proteus mirabilis. Front Cell Infect Microbiol 8Google Scholar
  67. Pérez-Pérez M, Glez-Peña D, Fdez-Riverola F, Marky LA (2014) A lightweight web tracking tool for document annotation. Adv Intell Syst Comput 8th Int Conf Pract Appl Comput Biol Bioinforma PACBB 294:269–276Google Scholar
  68. Pérez-Pérez M, Jorge P, Pérez Rodríguez G, Pereira MO, Lourenço A (2017) Quorum sensing inhibition in Pseudomonas aeruginosa biofilms: new insights through network mining. Biofouling 33(2)PubMedCrossRefPubMedCentralGoogle Scholar
  69. Persson T, Hansen TH, Rasmussen TB, Skindersø ME, Givskov M, Nielsen J (2005) Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem 3(2):253–262PubMedCrossRefPubMedCentralGoogle Scholar
  70. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP et al (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96(20):11229–11234. Pmid:10500159PubMedPubMedCentralCrossRefGoogle Scholar
  71. Pollastri G, McLysaght A (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21:1719–1720PubMedCrossRefPubMedCentralGoogle Scholar
  72. Pompeani AJ, Irgon JJ, Berger MF, Bulyk ML, Wingreen NS, Bassler BL (2008) The Vibrio harveyi master quorum-sensing regulator, LuxR, a TetR-type protein is both an activator and a repressor: DNA recognition and binding specificity at target promoters. Mol Microbiol 70(1):76–88. Scholar
  73. Qian Z et al (1995) Isolation and characterization of sheep lactoferrin, an inhibitor of platelet aggregation and comparison with human lactoferrin. Biochim Biophys Acta 1243:25–32PubMedCrossRefPubMedCentralGoogle Scholar
  74. Rajput A, Gupta AK, Kumar M (2015) Prediction and analysis of quorum sensing peptides based on sequence features. PLoS One. Scholar
  75. Rasmussen TB, Givskov MC (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152(4):895–904PubMedCrossRefPubMedCentralGoogle Scholar
  76. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Köte M et al (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187(5):1799–1814. Scholar
  77. Rasmussen A, Rasmussen T, Edwards MD, Schauer D, Schumann U, Miller S (2007) The role of tryptophan residues in the function and stability of the mechanosensitive channel MscS from Escherichia coli. Biochemistry 46(38):10899–10908. Pmid:17718516PubMedCrossRefPubMedCentralGoogle Scholar
  78. Samanta U, Chakrabarti P (2001) Assessing the role of tryptophan residues in the binding site. Protein Eng 14(1):7–15. Pmid:11287674PubMedCrossRefPubMedCentralGoogle Scholar
  79. Sasaki K et al (2010) A peptidomics strategy for discovering endogenous bioactive peptides. J Proteome Res 9:5047PubMedCrossRefPubMedCentralGoogle Scholar
  80. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154PubMedPubMedCentralCrossRefGoogle Scholar
  81. Schaadt NS (2013) Computational systems biology methods for functional classification of membrane proteins and modeling of quorum sensing in Pseudomonas aeruginosaGoogle Scholar
  82. Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15(12):1468–1480. Pmid:11410527PubMedPubMedCentralCrossRefGoogle Scholar
  83. Sharma A, Gupta P, Kumar R, Bhardwaj A (2016a) dPABBs: a novel in silico approach for predicting and designing anti-biofilm peptides scientific reports. Scholar
  84. Sharma A, Gupta P, Kumar R, Bhardwaj A (2016b) dPABBs: a novel in silico approach for predicting and designing anti-biofilm peptides. Sci Rep 6:Article number: 21839. Scholar
  85. Syvitski RT, Tian XL, Sampara K, Salman A, Lee SF, Jakeman DL (2007) Structure-activity analysis of quorum-sensing signaling peptides from Streptococcus mutans. J Bacteriol 189(4):1441–1450. Pmid:16936029PubMedCrossRefPubMedCentralGoogle Scholar
  86. Thoendel M, Horswill AR (2010) Biosynthesis of peptide signals in gram-positive bacteria. Adv Appl Microbiol 71:91–112. Pmid:20378052PubMedCrossRefPubMedCentralGoogle Scholar
  87. Thomas S et al (2010) CAMP: a useful resource for research on antimicrobial peptides. Nucl Acids Res 38(Suppl. 1):D774PubMedCrossRefPubMedCentralGoogle Scholar
  88. Tian X, Syvitski RT, Liu T, Livingstone N, Jakeman DL, Li YH (2009) A method for structure–activity analysis of quorum-sensing signaling peptides from naturally transformable streptococci. Biol Proc 11(1):207CrossRefGoogle Scholar
  89. Tomasz A (1965) Control of the competent state in pneumococcus by a hormone-like cell product: an example for a new type of regulatory mechanism in bacteria. Nature 208(5006):155–159. Pmid::5884251PubMedCrossRefPubMedCentralGoogle Scholar
  90. Ute M, Schuster M, Heim R, Singh A, Olson ER, Peter Greenberg E (2006a) Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob Agent Chemother 50(11):3674–3679CrossRefGoogle Scholar
  91. Ute M, Schuster M, Heim R, Singh A, Olson ER, Peter Greenberg E (2006b) Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob Agents Chemother 50(11):3674–3679CrossRefGoogle Scholar
  92. Vattem DA, Mihalik K, Crixell SH, McLean RJ (2007) Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia 78(4):302–310PubMedCrossRefPubMedCentralGoogle Scholar
  93. Wang R et al (2011a) Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Invest 121:238–248. Scholar
  94. Wang P et al (2011b) Prediction of antimicrobial peptides based on sequence alignment and feature selection methods. PLoS One 6:e18476PubMedPubMedCentralCrossRefGoogle Scholar
  95. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410PubMedPubMedCentralCrossRefGoogle Scholar
  96. Wynendaele E, Bronselaer A, Nielandt J, D’Hondt M, Stalmans S, Bracke N et al (2013) Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides. Nucleic Acids Res 41(Database issue):D655–D659. pmid:23180797PubMedCrossRefPubMedCentralGoogle Scholar
  97. Zhang G, Zhang F, Ding G, Li J, Guo X, Zhu J, Zhou L, Cai S, Liu X, Luo Y et al (2012) Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. ISME J 6:1–9. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shrikant Pawar
    • 1
  • Pallaval Veera Bramhachari
    • 2
  • Chandrajit Lahiri
    • 3
    Email author
  1. 1.Yale Center for Genome AnalysisYale UniversityNew HavenUSA
  2. 2.Department of BiotechnologyKrishna UniversityMachilipatnamIndia
  3. 3.Department of Biological SciencesSunway UniversityPetaling JayaMalaysia

Personalised recommendations