Advertisement

Methods for the Detection and Quantification of Quorum-Sensing Signals in Food Spoilage

  • A. M. V. N. Prathyusha
  • Harish Annavarapu
  • Pallaval Veera BramhachariEmail author
Chapter

Abstract

Food spoilage is a complex process occurs due to microbial activities. Microorganisms synthesize several proteolytic, pectinolytic, lipolytic and saccharolytic enzymes whose activity is associated with deterioration of foods. The synthesis of these enzymes is controlled by quorum sensing (QS) signifying a possible role of cell-to-cell communication in spoilage of foods. A diverse variety of Gram-negative and Gram-positive bacterial species coordinate communal behaviour based on population density. Microbes communicate among them by producing the signalling molecules, Quorum-sensing molecules (QSM). This review focuses on QS molecules and techniques for their detection and quantification.

Keywords

Quorum-sensing molecules Food spoilage Quantitative analysis 

Notes

Acknowledgments

Dr. Bramhachari and colleagues are grateful to Krishna University, Machilipatnam, for the extended support.

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. Ahmed N, Singh J, Kour H, Gupta P (2013) Naturally occurring preservatives in food and their role in food preservation. Int J Pharm Biol Arch 4(1):22–30Google Scholar
  2. Ammor MS, Michaelidis C, Nychas G-JE (2008) Insights into the role of quorum sensing in food spoilage. J Food Prot 71(7):1510–1525. http://jfoodprotection.org/doi/abs/10.4315/0362-028X-71.7.1510PubMedCrossRefPubMedCentralGoogle Scholar
  3. Anbazhagan D, Mansor M, Yan GO, Md Yusof MY, Hassan H, Sekaran SD (2012) Detection of QS signal molecules and identification of an AI synthase gene among biofilm forming clinical isolates of Acinetobacter spp. PLoS One 7(7):e36696PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bai AJ, Ravishankar Rai V (2011) Bacterial quorum sensing and food industry. Compr Rev Food Sci Food Saf 10(3):183–193CrossRefGoogle Scholar
  5. Barnby-Smith FM (1992) Bacteriocins: applications in food preservation. Trends Food Sci Technol 3:133–137CrossRefGoogle Scholar
  6. Barrett DM, Lloyd B (2012) Advanced preservation methods and nutrient retention in fruits and vegetables. J Sci Food Agric 92(1):7–22PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bassler BL, Wright M, Silverman MR (1994) Multiple signalling systems controlling expression of luminescence in Vibrio Harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13(2):273–286PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bassolé IHN, Juliani HR (2012) Essential oils in combination and their antimicrobial properties. Molecules 17(4):3989–4006PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bezkorovainy A (1989) Biochemistry and physiology of bifidobacteria. CRC Press, Boca RatonGoogle Scholar
  10. Bruhn JB et al (2004) Presence of Acylated Homoserine lactones (AHLs) and AHL-producing bacteria in meat and potential role of AHL in spoilage of meat. Appl Environ Microbiol 70(7):4293–4302PubMedPubMedCentralCrossRefGoogle Scholar
  11. Burgess NA et al (2002) LuxS-dependent quorum sensing in Porphyromonas Gingivalis modulates protease and Haemagglutinin activities but is not essential for virulence. Microbiology 148(3):763–772PubMedPubMedCentralCrossRefGoogle Scholar
  12. Burmølle M, Hansen LH, Oregaard G, Sørensen SJ (2003) Presence of N-acyl homoserine lactones in soil detected by a whole-cell biosensor and flow cytometry. Microb Ecol 45(3):226–236PubMedCrossRefPubMedCentralGoogle Scholar
  13. Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311(5764):1113–1116PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cataldi TRI, Bianco G, Palazzo L, Quaranta V (2007) Occurrence of N-acyl-l-homoserine lactones in extracts of some gram-negative bacteria evaluated by gas chromatography-mass spectrometry. Anal Biochem 361(2):226–235PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chung YC, Yeh JY, Tsai CF (2011) Antibacterial characteristics and activity of water-soluble chitosan derivatives prepared by the Maillard reaction. Molecules 16(10):8504–8514PubMedPubMedCentralCrossRefGoogle Scholar
  16. Clarke MB, Sperandio V (2005) Transcriptional autoregulation by quorum sensing Escherichia Coli regulators B and C (QseBC) in Enterohaemorrhagic E. Coli (EHEC). Mol Microbiol 58(2):441–455PubMedCrossRefPubMedCentralGoogle Scholar
  17. De Vugst L, Vandamme EJ (1994) Bacteriocins of lactic acid Bacteria: microbiology. Genetics and Applications Blackie Academics and Professional, LondonGoogle Scholar
  18. Deng Y, Zhao Y, Padilla-Zakour O, Yang G (2015) Polyphenols, antioxidant and antimicrobial activities of leaf and bark extracts of Solidago canadensis L. Ind Crop Prod 74:803–809CrossRefGoogle Scholar
  19. Devi MP, Bhowmick N, Bhanusree MR, Ghosh SK (2015) Preparation of value-added products through preservation. In Value addition of horticultural crops: recent trends and future directions. Springer, New Delhi, pp 13–41Google Scholar
  20. Dhall RK (2013) Advances in edible coatings for fresh fruits and vegetables: a review. Crit Rev Food Sci Nutr 53(5):435–450PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dong YH, Zhang XF, Soo HML, Greenberg EP, Zhang LH (2005) The two-component response regulator PprB modulates quorum-sensing signal production and global gene expression in Pseudomonas aeruginosa. Mol Microbiol 56(5):1287–1301PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dunny GM, Leonard BAB (1997) Cell-cell communication in gram-positive bacteria. Microbiology 51:–527, 564PubMedCrossRefPubMedCentralGoogle Scholar
  23. Fletcher MP, Diggle SP, Cámara M, Williams P (2007) Biosensor-based assays for PQS, HHQ and related 2-alkyl-4-quinolone quorum sensing signal molecules. Nat Protoc 2(5):1254PubMedCrossRefPubMedCentralGoogle Scholar
  24. Fong K, Chung W, Lamont R (2001) Intra-and interspecies regulation of gene expression by actinobacillus actinomycetemcomitans LuxS. Infect Immun 69(12):7625–7634. http://iai.asm.org/cgi/content/abstract/69/12/7625PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gambuteanu C, Borda D, Alexe P (2013) The effect of freezing and thawing on technological properties of meat: review. J Agroaliment Process Technol 19(1):88–93Google Scholar
  26. Globisch D, Lowery CA, McCague KC, Janda KD (2012) Uncharacterized 4,5-Dihydroxy-2,3-Pentanedione (DPD) molecules revealed through NMR spectroscopy: implications for a greater signaling diversity in bacterial species. Angew Chemie Int Ed 51(17):4204–4208CrossRefGoogle Scholar
  27. Gopu V, Meena CK, Shetty PH (2015) Quercetin influences quorum sensing in food borne bacteria: in-vitro and in-silico evidence. PLoS One 10(8):1–17CrossRefGoogle Scholar
  28. Hakovirta J, Reunanen J, Saris PEJ (2006) Bioassay for nisin in milk, processed cheese, salad dressings, canned tomatoes, and liquid egg products. Appl Environ Microbiol 72(2):1001–1005PubMedPubMedCentralCrossRefGoogle Scholar
  29. Henke JM, Bassler BL (2004) Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186(20):6902–6914PubMedPubMedCentralCrossRefGoogle Scholar
  30. Henning S, Metz R, Hammes WP (1986) Studies on the mode of action of nisin. Int J Food Microbiol 3(3):121–134CrossRefGoogle Scholar
  31. Hintz T, Matthews KK, Di R (2015) Review: the use of plant antimicrobial compounds for food preservation. Hindawi (BioMed Res Int) 2015:1–12CrossRefGoogle Scholar
  32. Hoang HH, Becker A, González JE, Gonza JE (2004) The LuxR homolog ExpR, in combination with the sin quorum sensing system, plays a central role in Sinorhizobium Meliloti gene expression. J Bacteriol 186(16):5460–5472PubMedPubMedCentralCrossRefGoogle Scholar
  33. Holden MT, Sr C, de Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labbate M, England D, Rice S, Givskov M, Salmond GPC, Stewart GSAB, Bycroft BW, Kjellberg S, Williams P (1999) Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 33:1254–1256CrossRefGoogle Scholar
  34. Immonen N, Karp M (2007) Bioluminescence-based bioassays for rapid detection of nisin in food. Biosens Bioelectron 22(9–10):1982–1987PubMedCrossRefPubMedCentralGoogle Scholar
  35. Inetianbor JE, Yakubu JM, Ezeonu SC (2015) Effects of food additives and preservatives on man–a review. Asian J Sci Technol 6(2):1118–1135Google Scholar
  36. James IF (2003) AD03E preservation of fruit and vegetables. Agromisa FoundationGoogle Scholar
  37. Juneja VK, Dwivedi HP, Yan X (2012) Novel natural food antimicrobials. Annu Rev Food Sci Technol 3(1):381–403. http://www.annualreviews.org/doi/10.1146/annurev-food-022811-101241PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kareb O, Aïder M (2019) Quorum sensing circuits in the communicating mechanisms of Bacteria and its implication in the biosynthesis of Bacteriocins by lactic acid Bacteria: a review. In: Probiotics Antimicrobial Proteins, pp 1–13Google Scholar
  39. Lingeng L, Hume ME, Pillai SD (2004) Autoinducer-2–like activity associated with foods and its interaction with food additives. J Food Prot 67(7):1457–1462CrossRefGoogle Scholar
  40. Llamas I, Quesada E, Martínez-Cánovas MJ, Gronquist M, Eberhard A, Gonzalez JE (2005) Quorum sensing in halophilic bacteria: detection of N-acyl-homoserine lactones in the exopolysaccharideproducing species of Halomonas. Extremophiles 9(4):333–341PubMedCrossRefPubMedCentralGoogle Scholar
  41. Lu L, Hume ME, Pillai SD (2004) Autoinducer-2–like activity associated with foods and its interaction with food additives. J Food Prot 67(7):1457–1462PubMedCrossRefPubMedCentralGoogle Scholar
  42. Massai F, Imperi F, Quattrucci S, Zennaro E, Visca P, Leoni L (2011) A multitask biosensor for micro-volumetric detection of N-3-oxo-dodecanoylhomoserine lactone QS signal. Biosens Bioelectron 26(8):3444–3449PubMedCrossRefPubMedCentralGoogle Scholar
  43. Meijler MM, Hom LG, Kaufmann GF, McKenzie KM, Sun C, Moss JA et al (2004) Synthesis and biological validation of a ubiquitous quorum-sensing molecule. Angew Chem Int Ed 43(16):2106–2108CrossRefGoogle Scholar
  44. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P (1997) QS and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143(Pt 12):3703–3711CrossRefGoogle Scholar
  45. Nassar A, Farrag SA (1995) Nisin as inactivator to Listeria Monocytogenes in broth and in ground beed. Assiut Vet Med J 32:198–198Google Scholar
  46. Nazir F et al (2018) Natural antimicrobials for food preservation. Journal of Pharmacognosy and Phytochemistry JPP 6(66):2078–2082. http://www.phytojournal.com/archives/2017/vol6issue6/PartAC/6-6-335-952.pdfGoogle Scholar
  47. Nazzaro F, Fratianni F, Coppola R (2013) Quorum sensing and phytochemicals. Int J Mol Sci 14(6):12607–12619PubMedPubMedCentralCrossRefGoogle Scholar
  48. Pandey AK, Kumar S (2013) Perspective on plant products as antimicrobials agents: a review. Pharmacologia 4(7):469–480. http://pharmacologia.com/abstract.php?doi=pharmacologia.2013.469.480CrossRefGoogle Scholar
  49. Parveen N, Cornell KA (2011) Methylthioadenosine/S-adenosylhomocysteine nucleosidase, a critical enzyme for bacterial metabolism. Mol Microbiol 79(1):7–20PubMedCrossRefPubMedCentralGoogle Scholar
  50. Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP (1994) Structure of the AI required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91(1):197–201PubMedPubMedCentralCrossRefGoogle Scholar
  51. Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 37(2):156–181PubMedCrossRefPubMedCentralGoogle Scholar
  52. Pinto UM, de Souza Viana E, Martins ML, Vanetti MCD (2007) Detection of acylated homoserine lactones in gram-negative proteolytic psychrotrophic bacteria isolated from cooled raw milk. Food Control 18(10):1322–1327CrossRefGoogle Scholar
  53. Rahman MS (2007) Food preservation: overview. In: Handbook of food preservation. CRC Press, pp 21–36Google Scholar
  54. Rai N, Anand R, Ramkumar K, Sreenivasan V, Dabholkar S, Venkatesh KV, Thattai M (2012) Prediction by promoter logic in bacterial QS. PLoS Comput Biol 8(1):e1002361PubMedPubMedCentralCrossRefGoogle Scholar
  55. Rajamani S, Zhu J, Pei D, Sayre R (2007) A LuxP-FRETbased reporter for the detection and quantification of AI-2 bacterial quorum-sensing signal compounds. Biochemistry 46:3990–3997CrossRefGoogle Scholar
  56. Rambaugh KP (2011) Qorum sensing: methods and protocols. Springer, New York/Dordrecht/Heidelberg/LondonCrossRefGoogle Scholar
  57. Rasch M et al (2005) Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts. Appl Environ Microbiol 71(6):3321–3330PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ravn L et al (2001) Methods for detecting acylated homoserine lactones produced by gram-negative Bacteria and their application in studies of AHL-production kinetics. J Microbiol Methods 44(3):239–251PubMedCrossRefPubMedCentralGoogle Scholar
  59. Rosa SR (2006) Postharvest management of fruit and vegetables in the Asia-Pacific, 1st edn. Tokyo, Asian Productivity OrganizationGoogle Scholar
  60. Rutherford ST, Bassler BL (2012) Bacterial QS: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2(11)Google Scholar
  61. Savka MA, Le PT, Burr TJ (2011) LasR receptor for detection of long-chain quorum-sensing signals: identification of N-acyl-homoserine lactones encoded by the avsI locus of agrobacterium vitis. Curr Microbiol 62(1):101–110PubMedCrossRefPubMedCentralGoogle Scholar
  62. Senna MMH, Al-Shamrani KM, Al-Arifi AS (2014) Edible coating for shelf-life extension of fresh banana fruit based on gamma irradiated plasticized poly(vinyl alcohol)/carboxymethyl cellulose/tannin composites. Mater Sci Appl 05(06):395–415. http://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/msa.2014.56045Google Scholar
  63. Seon Mi Y et al (2015) Effects of various freezing and thawing techniques on pork quality in ready-to-eat meals. Afr J Food Sci 9(11):525–533. http://academicjournals.org/journal/AJFS/article-abstract/0DE7A8D55979CrossRefGoogle Scholar
  64. Sharif ZIM et al (2017) Review on methods for preservation and natural preservatives for extending the food longevity. Chem Eng Res Bull 19(September):145. https://www.banglajol.info/index.php/CERB/article/view/33809CrossRefGoogle Scholar
  65. Shaw PD et al (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci 94(12):6036–6041. http://www.pnas.org/cgi/doi/10.1073/pnas.94.12.6036PubMedCrossRefPubMedCentralGoogle Scholar
  66. Skandamis PN, Nychas GJE (2012) Quorum sensing in the context of food microbiology. Appl Environ Microbiol 78(16):5473–5482PubMedPubMedCentralCrossRefGoogle Scholar
  67. Sperandio V, Mellies JL, Nguyen W, Shin S, Kaper JB (1999) Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc Natl Acad Sci 96(26):15196–15201PubMedCrossRefPubMedCentralGoogle Scholar
  68. Steindler L, Venturi V (2007) Detection of quorumsensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett 266(1):1–9PubMedCrossRefPubMedCentralGoogle Scholar
  69. Sun J, Daniel R, Wagner-Döbler I, Zeng AP (2004) Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol 4:1–11CrossRefGoogle Scholar
  70. Tello E, Castellanos L, Duque C (2013) Synthesis of cembranoid analogues and evaluation of their potential as QS inhibitors. Bioorg Med Chem 21(1):242–256PubMedCrossRefPubMedCentralGoogle Scholar
  71. Thiel V et al (2009) Identification, quantification, and determination of the absolute configuration of the bacterial quorum-sensing signal autoinducer-2 by gas chromatography-mass spectrometry. Chembiochem 10(3):479–485PubMedCrossRefPubMedCentralGoogle Scholar
  72. Tikhonov VE et al (2006) Bactericidal and antifungal activities of a low molecular weight chitosan and its N−/2(3)-(Dodec-2-Enyl)Succinoyl/−derivatives. Carbohydr Polym 64(1):66–72CrossRefGoogle Scholar
  73. Turovskiy Y, Kashtanov D, Paskhover B, Chikindas ML (2007) QS: fact, fiction, and everything in between. Adv Appl Microbiol 62:191–234PubMedPubMedCentralCrossRefGoogle Scholar
  74. Vendeville A et al (2005) Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol 3(5):383–396PubMedPubMedCentralCrossRefGoogle Scholar
  75. Wahlström G, Saris PEJ (1999) A nisin bioassay based on bioluminescence. Appl Environ Microbiol 65(8):3742–3745PubMedPubMedCentralGoogle Scholar
  76. Walters M, Sircili MP, Sperandio V (2006) AI-3 synthesis is not dependent on luxS in Escherichia coli. J Bacteriol 188(16):5668–5681PubMedPubMedCentralCrossRefGoogle Scholar
  77. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in gram-negative bacteria. FEMS Microbiol Rev 25:365–404PubMedCrossRefPubMedCentralGoogle Scholar
  78. Winson MK, Swift S, Fish L, Throup JP, Jorgensen F, Chhabra SR, Bycroft BW, Williams P, Stewart GS (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone–mediated QS. FEMS Microbiol Lett 163:185–192PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • A. M. V. N. Prathyusha
    • 1
  • Harish Annavarapu
    • 2
  • Pallaval Veera Bramhachari
    • 1
    Email author
  1. 1.Department of BiotechnologyKrishna UniversityMachilipatnamIndia
  2. 2.Department of Food and Nutritional SciencesAcharya Nagarjuna UniversityGunturIndia

Personalised recommendations