Role of Heat Shock Protein 90 in Diabetes and Pancreatic Cancer Management

  • Pinninti Santosh SushmaEmail author
  • Saimila Momin
  • Gowru Srivani


Heat shock protein 90 (Hsp90) plays a key role in the activation of client proteins, which implicate Hsp90 in various biological processes, specifically coordinating regulatory mechanisms in order to control their activity. One of the key regulators responsible for the upregulation of Hsp90 is heat shock factor (HSF1), whose primary role is to bind heat shock elements (HSEs) with Hsp90 promoters. HSF1 functions by interacting with the transcriptional programming of Hsp90 and with integrate biological signals to regulate levels of Hsp90, especially during times of stress. Furthermore, not only are these Hsp90 protein chaperones upregulated but they can also be released from pancreatic beta cells during pro-inflammatory circumstances. Additionally, Hsp90 interferes with survival and metastatic pathways that are associated with pancreatic cancer (PC) progression. Future investigations on protein chaperons that are associated with Hsp90 may lead to the identification of biomarkers for diseases such as diabetes and PCs and potentially lead to therapeutic strategies in management of these chronic diseases.


Heat shock proteins Diabetes Pancreatic cancer 





Adenosine triphosphate


C-terminal transactivation


DNA-binding domain


Focal adhesion kinase


Hypoxia-induced factor-1α


Heat shock elements


Heat shock factor


Heat shock protein 90


Heat shock response


Insulin-like growth factor-1 receptor



NK cells

Natural killer cells


N-terminal transactivation


Peripheral blood mononuclear cell


Pancreatic cancer


Type 1 diabetes


Vascular endothelial growth factor


  1. 1.
    Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci CMLS 59(10):1640–1648PubMedGoogle Scholar
  2. 2.
    Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761PubMedGoogle Scholar
  3. 3.
    Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11(7):515PubMedGoogle Scholar
  4. 4.
    Finka A, Goloubinoff P (2013) Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 18(5):591–605PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ammirante M, Rosati A, Gentilella A, Festa M, Petrella A, Marzullo L, Pascale M, Belisario M, Leone A, Turco M (2008) The activity of hsp90α promoter is regulated by NF-κB transcription factors. Oncogene 27(8):1175PubMedGoogle Scholar
  6. 6.
    Gupta RS (1995) Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol 12(6):1063–1073PubMedGoogle Scholar
  7. 7.
    Zuehlke AD, Beebe K, Neckers L, Prince T (2015) Regulation and function of the human HSP90AA1 gene. Gene 570(1):8–16PubMedPubMedCentralGoogle Scholar
  8. 8.
    Grad I, Cederroth CR, Walicki J, Grey C, Barluenga S, Winssinger N, De Massy B, Nef S, Picard D (2010) The molecular chaperone Hsp90α is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS One 5(12):e15770PubMedPubMedCentralGoogle Scholar
  9. 9.
    Pearl LH (2005) Hsp90 and Cdc37–a chaperone cancer conspiracy. Curr Opin Genet Dev 15(1):55–61PubMedGoogle Scholar
  10. 10.
    Hořejší Z, Takai H, Adelman CA, Collis SJ, Flynn H, Maslen S, Skehel JM, de Lange T, Boulton SJ (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39(6):839–850PubMedGoogle Scholar
  11. 11.
    Takai H, Xie Y, de Lange T, Pavletich NP (2010) Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev 24(18):2019–2030PubMedPubMedCentralGoogle Scholar
  12. 12.
    Makhnevych T, Houry WA (2012) The role of Hsp90 in protein complex assembly. Biochim Biophy Acta (BBA)-Mol Cell Res 1823(3):674–682Google Scholar
  13. 13.
    Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396(6709):336Google Scholar
  14. 14.
    Lindquist S (2009) Protein folding sculpting evolutionary change. In: Cold Spring Harbor symposia on quantitative biology: 2009. Cold Spring Harbor Laboratory Press, Woodbury, pp 103–108Google Scholar
  15. 15.
    Yahara I (1999) The role of HSP90 in evolution. Genes Cells 4(7):375–379PubMedGoogle Scholar
  16. 16.
    Williams TA, Fares MA (2010) The effect of chaperonin buffering on protein evolution. Genome Biol Evol 2:609–619PubMedCentralGoogle Scholar
  17. 17.
    Zhao R, Davey M, Hsu Y-C, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120(5):715–727PubMedGoogle Scholar
  18. 18.
    Prodromou C, Panaretou B, Chohan S, Siligardi G, O’Brien R, Ladbury JE, Roe SM, Piper PW, Pearl LH (2000) The ATPase cycle of Hsp90 drives a molecular ‘clamp’via transient dimerization of the N-terminal domains. EMBO J 19(16):4383–4392PubMedPubMedCentralGoogle Scholar
  19. 19.
    Ali MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW, Prodromou C, Pearl LH (2006) Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex. Nature 440(7087):1013PubMedPubMedCentralGoogle Scholar
  20. 20.
    Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, Panaretou B, Piper PW, Pearl LH (2003) Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11(3):647–658Google Scholar
  21. 21.
    Meyer P, Prodromou C, Liao C, Hu B, Roe SM, Vaughan CK, Vlasic I, Panaretou B, Piper PW, Pearl LH (2004) Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J 23(3):511–519PubMedPubMedCentralGoogle Scholar
  22. 22.
    Sorger PK, Pelham HR (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54(6):855–864PubMedGoogle Scholar
  23. 23.
    Pirkkala L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15(7):1118–1131PubMedGoogle Scholar
  24. 24.
    Wiederrecht G, Seto D, Parker CS (1988) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54(6):841–853PubMedGoogle Scholar
  25. 25.
    Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65(3):363–366PubMedGoogle Scholar
  26. 26.
    Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115PubMedGoogle Scholar
  27. 27.
    Holmberg CI, Tran SE, Eriksson JE, Sistonen L (2002) Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci 27(12):619–627PubMedGoogle Scholar
  28. 28.
    Voellmy R (2004) On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9(2):122PubMedPubMedCentralGoogle Scholar
  29. 29.
    Nieto-Sotelo J, Wiederrecht G, Okuda A, Parker CS (1990) The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 62(4):807–817PubMedGoogle Scholar
  30. 30.
    Sakurai H, Enoki Y (2010) Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression. FEBS J 277(20):4140–4149PubMedGoogle Scholar
  31. 31.
    Peteranderl R, Rabenstein M, Shin Y-K, Liu CW, Wemmer DE, King DS, Nelson HC (1999) Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor. Biochemistry 38(12):3559–3569PubMedGoogle Scholar
  32. 32.
    Farkas T, Kutskova YA, Zimarino V (1998) Intramolecular repression of mouse heat shock factor 1. Mol Cell Biol 18(2):906–918PubMedPubMedCentralGoogle Scholar
  33. 33.
    Rabindran SK, Haroun RI, Clos J, Wisniewski J, Wu C (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259(5092):230–234PubMedGoogle Scholar
  34. 34.
    Zuo J, Baler R, Dahl G, Voellmy R (1994) Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol Cell Biol 14(11):7557–7568PubMedPubMedCentralGoogle Scholar
  35. 35.
    Lu M, Lee Y-J, Park S-M, Kang HS, Kang SW, Kim S, Park J-S (2009) Aromatic-participant interactions are essential for disulfide-bond-based trimerization in human heat shock transcription factor 1. Biochemistry 48(18):3795–3797PubMedGoogle Scholar
  36. 36.
    Ahn S-G, Thiele DJ (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 17(4):516–528PubMedCentralGoogle Scholar
  37. 37.
    Bulman AL, Nelson HCM (2005) Role of trehalose and heat in the structure of the C-terminal activation domain of the heat shock transcription factor. Proteins: Struct Funct Bioinf 58(4):826–835Google Scholar
  38. 38.
    Pattaramanon N, Sangha N, Gafni A (2007) The carboxy-terminal domain of heat-shock factor 1 is largely unfolded but can be induced to collapse into a compact, partially structured state. Biochemistry 46(11):3405–3415PubMedGoogle Scholar
  39. 39.
    Kline MP, Morimoto RI (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 17(4):2107–2115PubMedPubMedCentralGoogle Scholar
  40. 40.
    Knauf U, Newton EM, Kyriakis J, Kingston RE (1996) Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev 10(21):2782–2793PubMedGoogle Scholar
  41. 41.
    Cho HS, Liu CW, Damberger FF, Pelton JG, Nelson HCM, Wemmer DE (1996) Yeast heat shock transcription factor N-terminal activation domains are unstructured as probed by heteronuclear NMR spectroscopy. Protein Sci 5(2):262–269PubMedPubMedCentralGoogle Scholar
  42. 42.
    Bonner JJ, Heyward S, Fackenthal DL (1992) Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor. Mol Cell Biol 12(3):1021–1030PubMedCentralGoogle Scholar
  43. 43.
    Chen T, Li F, Chen B-S (2009) Cross-talks of sensory transcription networks in response to various environmental stresses. Interdiscip Sci: Comput Life Sci 1(2):162–162Google Scholar
  44. 44.
    Sorger PK (1990) Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62(4):793–805PubMedGoogle Scholar
  45. 45.
    Ali A, Bharadwaj S, O’Carroll R, Ovsenek N (1998) HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18(9):4949–4960PubMedPubMedCentralGoogle Scholar
  46. 46.
    Bharadwaj S, Ali A, Ovsenek N (1999) Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol Cell Biol 19(12):8033–8041PubMedPubMedCentralGoogle Scholar
  47. 47.
    Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94(4):471–480Google Scholar
  48. 48.
    Amin J, Ananthan J, Voellmy R (1988) Key features of heat shock regulatory elements. Mol Cell Biol 8(9):3761–3769PubMedPubMedCentralGoogle Scholar
  49. 49.
    Pelham HR (1982) A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene. Cell 30(2):517–528PubMedGoogle Scholar
  50. 50.
    Xiao H, Lis JT (1988) Germline transformation used to define key features of heat-shock response elements. Science 239(4844):1139–1142PubMedGoogle Scholar
  51. 51.
    Heimberger T, Andrulis M, Riedel S, Stühmer T, Schraud H, Beilhack A, Bumm T, Bogen B, Einsele H, Bargou RC (2013) The heat shock transcription factor 1 as a potential new therapeutic target in multiple myeloma. Br J Haematol 160(4):465–476PubMedGoogle Scholar
  52. 52.
    Watkins RA, Evans-Molina C, Blum JS, DiMeglio LA (2014) Established and emerging biomarkers for the prediction of type 1 diabetes: a systematic review. Transl Res 164(2):110–121PubMedPubMedCentralGoogle Scholar
  53. 53.
    Atkinson MA, Bluestone JA, Eisenbarth GS, Hebrok M, Herold KC, Accili D, Pietropaolo M, Arvan PR, Von Herrath M, Markel DS (2011) How does type 1 diabetes develop?: the notion of homicide or β-cell suicide revisited. Diabetes 60(5):1370–1379PubMedPubMedCentralGoogle Scholar
  54. 54.
    Soleimanpour SA, Stoffers DA (2013) The pancreatic β cell and type 1 diabetes: innocent bystander or active participant? Trends Endocrinol Metab 24(7):324–331PubMedPubMedCentralGoogle Scholar
  55. 55.
    Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, Greenbaum CJ, Herold KC, Krischer JP, Lernmark Å (2015) Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 38(10):1964–1974PubMedPubMedCentralGoogle Scholar
  56. 56.
    Watkins RA, Evans-Molina C, Terrell JK, Day KH, Guindon L, Restrepo IA, Mirmira RG, Blum JS, DiMeglio LA (2016) Proinsulin and heat shock protein 90 as biomarkers of beta-cell stress in the early period after onset of type 1 diabetes. Transl Res 168:96-106. e101Google Scholar
  57. 57.
    Li W, Sahu D, Tsen F (2012) Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta (BBA)-Mol Cell Res 1823(3):730–741Google Scholar
  58. 58.
    Ocaña GJ, Pérez L, Guindon L, Deffit SN, Evans-Molina C, Thurmond DC, Blum JS (2017) Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90α. Immunology 151(2):198–210PubMedPubMedCentralGoogle Scholar
  59. 59.
    Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nat Rev Endocrinol 5(4):219Google Scholar
  60. 60.
    Qin H-Y, Mahon JL, Atkinson MA, Chaturvedi P, Lee-Chan E, Singh B (2003) Type 1 diabetes alters anti-hsp90 autoantibody isotype. J Autoimmun 20(3):237–245PubMedGoogle Scholar
  61. 61.
    Marhfour I, Lopez X, Lefkaditis D, Salmon I, Allagnat F, Richardson S, Morgan N, Eizirik DL (2012) Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. Diabetologia 55(9):2417–2420PubMedGoogle Scholar
  62. 62.
    Tersey SA, Nishiki Y, Templin AT, Cabrera SM, Stull ND, Colvin SC, Evans-Molina C, Rickus JL, Maier B, Mirmira RG (2012) Islet β-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes 61(4):818–827PubMedPubMedCentralGoogle Scholar
  63. 63.
    Engin F, Yermalovich A, Nguyen T, Hummasti S, Fu W, Eizirik DL, Mathis D, Hotamisligil GS (2013) Restoration of the unfolded protein response in pancreatic β cells protects mice against type 1 diabetes. Sci Transl Med 5(211):211ra156-211ra156Google Scholar
  64. 64.
    Brozzi F, Nardelli TR, Lopes M, Millard I, Barthson J, Igoillo-Esteve M, Grieco FA, Villate O, Oliveira JM, Casimir M (2015) Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia 58(10):2307–2316PubMedGoogle Scholar
  65. 65.
    Tukaj S, Kleszczyński K, Vafia K, Groth S, Meyersburg D, Trzonkowski P, Ludwig RJ, Zillikens D, Schmidt E, Fischer TW (2013) Aberrant expression and secretion of heat shock protein 90 in patients with bullous pemphigoid. PLoS One 8(7):e70496PubMedPubMedCentralGoogle Scholar
  66. 66.
    Ripley B, Isenberg D, Latchman D (2001) Elevated levels of the 90 kDa heat shock protein (hsp90) in SLE correlate with levels of IL-6 and autoantibodies to hsp90. J Autoimmun 17(4):341–346PubMedGoogle Scholar
  67. 67.
    Greenbaum CJ, Beam CA, Boulware D, Gitelman SE, Gottlieb PA, Herold KC, Lachin JM, McGee P, Palmer JP, Pescovitz MD (2012) Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite type 1 diabetes TrialNet data. Diabetes 61(8):2066–2073PubMedPubMedCentralGoogle Scholar
  68. 68.
    Steck AK, Vehik K, Bonifacio E, Lernmark A, Ziegler A-G, Hagopian WA, She J, Simell O, Akolkar B, Krischer J (2015) Predictors of progression from the appearance of islet autoantibodies to early childhood diabetes: The Environmental Determinants of Diabetes in the Young (TEDDY). Diabetes Care 38(5):808–813PubMedPubMedCentralGoogle Scholar
  69. 69.
    Goldberg EL, Dixit VD (2015) Drivers of age-related inflammation and strategies for healthspan extension. Immunol Rev 265(1):63–74PubMedPubMedCentralGoogle Scholar
  70. 70.
    Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, Grassi D, Gregg SQ, Stripay JL, Dorronsoro A (2017) Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8(1):422PubMedCentralGoogle Scholar
  71. 71.
    Isaacs JS, Xu W, Neckers L (2003) Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3(3):213–217PubMedGoogle Scholar
  72. 72.
    Neckers L (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8(4):S55–S61PubMedGoogle Scholar
  73. 73.
    Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 82(8):488–499PubMedGoogle Scholar
  74. 74.
    Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG, Simons JW, Zhong H (2002) Geldanamycin induces degradation of hypoxia-inducible factor 1α protein via the proteosome pathway in prostate cancer cells. Cancer Res 62(9):2478–2482PubMedGoogle Scholar
  75. 75.
    Gooljarsingh LT, Fernandes C, Yan K, Zhang H, Grooms M, Johanson K, Sinnamon RH, Kirkpatrick RB, Kerrigan J, Lewis T (2006) A biochemical rationale for the anticancer effects of Hsp90 inhibitors: slow, tight binding inhibition by geldanamycin and its analogues. Proc Natl Acad Sci 103(20):7625–7630PubMedGoogle Scholar
  76. 76.
    Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425(6956):407PubMedGoogle Scholar
  77. 77.
    Banerji U, Judson I, Workman P (2003) The clinical applications of heat shock protein inhibitors in cancer-present and future. Curr Cancer Drug Targets 3(5):385–390PubMedGoogle Scholar
  78. 78.
    Heath EI, Hillman DW, Vaishampayan U, Sheng S, Sarkar F, Harper F, Gaskins M, Pitot HC, Tan W, Ivy SP (2008) A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Cancer Res 14(23):7940–7946PubMedPubMedCentralGoogle Scholar
  79. 79.
    Nowakowski GS, McCollum AK, Ames MM, Mandrekar SJ, Reid JM, Adjei AA, Toft DO, Safgren SL, Erlichman C (2006) A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin Cancer Res 12(20):6087–6093PubMedGoogle Scholar
  80. 80.
    Biamonte MA, Shi J, Hong K, Hurst DC, Zhang L, Fan J, Busch DJ, Karjian PL, Maldonado AA, Sensintaffar JL (2006) Orally active purine-based inhibitors of the heat shock protein 90. J Med Chem 49(2):817–828PubMedGoogle Scholar
  81. 81.
    Zhang L, Fan J, Vu K, Hong K, Le Brazidec J-Y, Shi J, Biamonte M, Busch DJ, Lough RE, Grecko R (2006) 7 ‘-substituted benzothiazolothio-and pyridinothiazolothio-purines as potent heat shock protein 90 inhibitors. J Med Chem 49(17):5352–5362PubMedGoogle Scholar
  82. 82.
    Stoeltzing O, Liu W, Reinmuth N, Fan F, Parikh AA, Bucana CD, Evans DB, Semenza GL, Ellis LM (2003) Regulation of hypoxia-inducible factor-1α, vascular endothelial growth factor, and angiogenesis by an insulin-like growth factor-I receptor autocrine loop in human pancreatic cancer. Am J Pathol 163(3):1001–1011PubMedPubMedCentralGoogle Scholar
  83. 83.
    Tang R-F, Wang S-X, Zhang F-R, Peng L, Xiao Y, Zhang M (2005) Interleukin-1alpha, 6 regulate the secretion of vascular endothelial growth factor A, C in pancreatic cancer. Hepatobiliary Pancreat Dis Int: HBPD INT 4(3):460–463PubMedGoogle Scholar
  84. 84.
    Masui T, Hosotani R, Doi R, Miyamoto Y, Tsuji S, Nakajima S, Kobayashi H, Koizumi M, Toyoda E, Tulachan SS (2002) Expression of IL-6 receptor in pancreatic cancer: involvement in VEGF induction. Anticancer Res 22(6C):4093–4100PubMedGoogle Scholar
  85. 85.
    Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC, Peng Z, Huang S, Xiong HQ, Abbruzzese JL (2003) Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 22(3):319PubMedGoogle Scholar
  86. 86.
    Büchler P, Reber HA, Büchler M, Shrinkante S, Büchler MW, Friess H, Semenza GL, Hines OJ (2003) Hypoxia-inducible factor 1 regulates vascular endothelial growth factor expression in human pancreatic cancer. Pancreas 26(1):56–64PubMedGoogle Scholar
  87. 87.
    Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res 59(22):5830–5835PubMedGoogle Scholar
  88. 88.
    Gray MJ, Zhang J, Ellis LM, Semenza GL, Evans DB, Watowich SS, Gallick GE (2005) HIF-1α, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene 24(19):3110PubMedGoogle Scholar
  89. 89.
    Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, Gritsko T, Turkson J, Kay H, Semenza GL (2005) Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 24(36):5552PubMedGoogle Scholar
  90. 90.
    Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, Ferreira G, Iyer N, LaRusch J, Pak B, Taghavi P (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63(5):1138–1143PubMedGoogle Scholar
  91. 91.
    Stawowy P, Kallisch H, Kilimnik A, Margeta C, Seidah NG, Chrétien M, Fleck E, Graf K (2004) Proprotein convertases regulate insulin-like growth factor 1-induced membrane-type 1 matrix metalloproteinase in VSMCs via endoproteolytic activation of the insulin-like growth factor-1 receptor. Biochem Biophys Res Commun 321(3):531–538PubMedGoogle Scholar
  92. 92.
    Terry J, Lubieniecka JM, Kwan W, Liu S, Nielsen TO (2005) Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin prevents synovial sarcoma proliferation via apoptosis in in vitro models. Clin Cancer Res 11(15):5631–5638PubMedGoogle Scholar
  93. 93.
    Nair PN, De Armond DT, Adamo ML, Strodel WE, Freeman JW (2001) Aberrant expression and activation of insulin-like growth factor-1 receptor (IGF-1R) are mediated by an induction of IGF-1R promoter activity and stabilization of IGF-1R mRNA and contributes to growth factor independence and increased survival of the pancreatic cancer cell line MIA PaCa-2. Oncogene 20(57):8203PubMedGoogle Scholar
  94. 94.
    Bergmann U, Funatomi H, Yokoyama M, Beger HG, Korc M (1995) Insulin-like growth factor I overexpression in human pancreatic cancer: evidence for autocrine and paracrine roles. Cancer Res 55(10):2007–2011PubMedGoogle Scholar
  95. 95.
    Chang C-Y, Li M-C, Liao S-L, Huang Y-L, Shen C-C, Pan H-C (2005) Prognostic and clinical implication of IL-6 expression in glioblastoma multiforme. J Clin Neurosci 12(8):930–933PubMedGoogle Scholar
  96. 96.
    Nilsson MB, Langley RR, Fidler IJ (2005) Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res 65(23):10794–10800PubMedPubMedCentralGoogle Scholar
  97. 97.
    Loeffler S, Fayard B, Weis J, Weissenberger J (2005) Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int J Cancer 115(2):202–213PubMedGoogle Scholar
  98. 98.
    Dudley AC, Thomas D, Best J, Jenkins A (2005) A VEGF/JAK2/STAT5 axis may partially mediate endothelial cell tolerance to hypoxia. Biochem J 390(2):427–436PubMedPubMedCentralGoogle Scholar
  99. 99.
    Klampfer L (2006) Signal transducers and activators of transcription (STATs): novel targets of chemopreventive and chemotherapeutic drugs. Curr Cancer Drug Targets 6(2):107–121PubMedGoogle Scholar
  100. 100.
    Rubio-Viqueira B, Mezzadra H, Nielsen ME, Jimeno A, Zhang X, Iacobuzio-Donahue C, Maitra A, Hidalgo M, Altiok S (2007) Optimizing the development of targeted agents in pancreatic cancer: tumor fine-needle aspiration biopsy as a platform for novel prospective ex vivo drug sensitivity assays. Mol Cancer Ther 6(2):515–523PubMedGoogle Scholar
  101. 101.
    Price JT, Quinn JM, Sims NA, Vieusseux J, Waldeck K, Docherty SE, Myers D, Nakamura A, Waltham MC, Gillespie MT (2005) The heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, enhances osteoclast formation and potentiates bone metastasis of a human breast cancer cell line. Cancer Res 65(11):4929–4938PubMedGoogle Scholar
  102. 102.
    Bagatell R, Beliakoff J, David CL, Marron MT, Whitesell L (2005) Hsp90 inhibitors deplete key anti-apoptotic proteins in pediatric solid tumor cells and demonstrate synergistic anticancer activity with cisplatin. Int J Cancer 113(2):179–188PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pinninti Santosh Sushma
    • 1
    Email author
  • Saimila Momin
    • 2
    • 3
  • Gowru Srivani
    • 2
  1. 1.Department of BiotechnologyDr. NTR University of Health SciencesVijayawadaIndia
  2. 2.Department of Bioscience and BiotechnologyBanasthali UniversityVanasthaliIndia
  3. 3.Department of BiologyEmory UniversityAtlantaUSA

Personalised recommendations