Advertisement

Planar Hall Effect in MnSi

  • Tomoyuki YokouchiEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In ferromagnets, the resistance measured with current parallel to magnetization and current perpendicular to magnetization is different, which is called anisotropic magnetoresistance (AMR) effect. In chiral magnets, spin modulation direction of a chiral spin structure is also expected to give rise to AMR effect. In this chapter, we have investigated planar Hall effect, which sensitively extracts anisotropic component of resistance. In the well-established skyrmion phase region of the bulk samples, a prominent stepwise field profile of planar Hall effect is observed, which results from AMR effect with respect to the spin modulation direction. We also detect the characteristic planar Hall anomalies in the thin plate samples fabricated with the use of a focused ion beam, which indicates the formation of skyrmion strings lying in the sample plane. Formation of metastable skyrmions in thin plate samples identified by using the measurement of planar Hall effect is also shown.

Keywords

Skyrmion Anisotropic magnetoresistance (AMR) Planar Hall effect Metastable skyrmion 

References

  1. 1.
    Campbell IA, Fert A, Jaoul O (1970) J Phys C 1:S95CrossRefGoogle Scholar
  2. 2.
    McGuire T, Potter R (1975) IEEE Trans Magn 11:1018Google Scholar
  3. 3.
    Thompson DA, Romankiw LT, Mayadas AF (1975) IEEE Trans Magn 11:1039Google Scholar
  4. 4.
    Tang HX, Kawakami RK, Awschalom DD, Roukes ML (2003) Phys Rev Lett 90:107201ADSCrossRefGoogle Scholar
  5. 5.
    Bowen M, Friedland K-J, Herfort J, Schönherr H-P, Ploog KH (2005) Phys Rev 71:172401CrossRefGoogle Scholar
  6. 6.
    Jin X, Ramos R, Zhou Y, McEvoy C, Shvets IV (2006) J Appl Phys 99:08C509Google Scholar
  7. 7.
    Seemann KM, Freimuth F, Zhang H, Blügel S, Mokrousov Y, Bürgler E, Schneider CM (2011) Phys Rev Lett 107:086603ADSCrossRefGoogle Scholar
  8. 8.
    Kadowaki K, Okuda K, Date M (1982) J Phys Soc Jpn 51:2433ADSCrossRefGoogle Scholar
  9. 9.
    Demishev SV, Glushkov VV, Lobanova II, Anisimov MA, Ivanov VYu, Ishchenko TV, Karasev MS, Samarin NA, Sluchanko NE, Zimin VM, Semeno AV (2012) Phys Rev B 85:045131ADSCrossRefGoogle Scholar
  10. 10.
    Yokouchi T, Kanazawa N, Tsukazaki A, Kozuka Y, Kikkawa A, Taguchi Y, Kawasaki M, Ichikawa M, Kagawa F, Tokura Y (2015) J Phys Soc Jpn 84:104708Google Scholar
  11. 11.
    Marrows CH (2005) Adv Phys 54:585ADSCrossRefGoogle Scholar
  12. 12.
    Oike H, Kikkawa A, Kanazawa N, Taguchi Y, Kawasaki M, Tokura Y, Kagawa F (2016) Nat Phys 12:62CrossRefGoogle Scholar
  13. 13.
    Oike H, Suda M, Kamitani M, Ueda A, Mori H, Tokura Y, Yamamoto HM, Kagawa F (2018) Phys Rev B 97:085102ADSCrossRefGoogle Scholar
  14. 14.
    Ritz R, Halder M, Franz C, Bauer A, Wagner M, Bamler R, Rosch A, Pfleiderer C (2013) Phys Rev B 87:134424ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.RIKEN Center for Emergent Matter Science (CEMS)WakoJapan

Personalised recommendations