Advertisement

Impact and Current Perspectives of Zinc Oxide Nanoparticles on Soil

  • Monika Gupta
  • Divakar Sharma
Chapter

Abstract

Zinc oxide nanoparticles are being widely used in the nanotechnology industry. Due to the release of particles from zinc oxide nanoparticles containing products, it is likely that nanoparticles will enter the soil compartment mainly through the application of sewage mud sludge obtained from waste water treatment applications. This chapter presents an overview of the literature dealing with the fate and effects of zinc-oxide-based nanoparticles on the soil. The characteristics of NP in the environment (e.g., surface charge, shape, and size) and soil (eg, pH, soil content, ionic power and organic matter) will affect chemical and physical processes, which will result in agglomeration, aggregation and Nanoparticles dissolution. The characteristics and mobility of nanoparticles control the bioavailability of soil organisms as well. Consequently, exposure characterization in ecological toxic studies should focus more on dissolution, aggregation, and agglomeration processes. Comparing current studies is a daunting task because there are no standard toxicity tests for nanoparticles. In many cases, the reporting of the associated characterization data is sparse, or missing, which makes it impossible to explain and interpret the differences observed in the results of the studies.

Keywords

Zinc oxide nanoparticles Toxicity Soil Bioaccumulation Magnification 

References

  1. Ahmed S, Annu Chaudhry SA, Ikram S (2017) A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B 166:272–284PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bandyopadhyay S, Peralta-Videa JR, Plascencia-Villa G, José-Yacamán M, Gardea-Torresdey JL (2012) Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: use of advanced microscopic and spectroscopic techniques. J Hazard Mater 241:379–386PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515–516:60–69PubMedCrossRefPubMedCentralGoogle Scholar
  4. Baun A, Hartmann N, Grieger K, Kusk K (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395PubMedCrossRefPubMedCentralGoogle Scholar
  5. BCC Research (2014) Global markets for nanocomposites, nanoparticles, nanoclays, and nanotubes. https://www.bccresearch.com/market-research/nanotechnology/nanocomposites-market-nan021f.html?vsmaid=203/. Accessed 19 Dec 2018
  6. Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90(2):640–646PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200PubMedPubMedCentralCrossRefGoogle Scholar
  8. Boxall A, Chaudhry Q, Cinclair C, Jones A, Aitken R, Jefferson B, Watts C (2007) Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, Sand HuttonGoogle Scholar
  9. Buffet PE, Amiard-Triquet C, Dybowska A, Risso-de Faverney C, Guibbolini M, Valsami-Jones E, Monueyrac C (2012) Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor. Ecotoxicol Environ Saf 84:191–198PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chai H, Yao J, Sun J, Zhang C, Liu W, Zhu M, Ceccanti B (2015) The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ Contam Toxicol 94(4):490–505PubMedCrossRefPubMedCentralGoogle Scholar
  11. Connolly M, Fernández M, Conde E, Torrent F, Navas JM, Fernández-Cruz ML (2016) Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci Total Environ 551–552:334–343PubMedCrossRefPubMedCentralGoogle Scholar
  12. Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ (2011) Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plantbeneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78(5):1404–1410PubMedCrossRefPubMedCentralGoogle Scholar
  13. Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27CrossRefGoogle Scholar
  14. Du WC, Sun YY, Ji R, Zhu JG, Wu JC, Guo HY (2011) TiO2 and ZnO Nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828PubMedCrossRefPubMedCentralGoogle Scholar
  15. Ebbs SD, Scott JB, Pawan K, Jason CW, Craig M, Xingmao M (2016) Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environ Sci Nano 3(1):114–126CrossRefGoogle Scholar
  16. Feng X, Yan Y, Wan B, Li W, Jaisi DP, Zheng L, Zhang J, Liu F (2016) Enhanced dissolution and transformation of ZnO nanoparticles: the role of inositol hexakisphosphate. Environ Sci Technol 50:5651–5660PubMedCrossRefPubMedCentralGoogle Scholar
  17. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. PNAS 103(3):626–631PubMedCrossRefPubMedCentralGoogle Scholar
  18. French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43:1354–1359PubMedCrossRefPubMedCentralGoogle Scholar
  19. Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8(12):e84441PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe Pseudomonas Putida Kt2440. J Biol Eng 3(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45(4):1659–1664PubMedCrossRefPubMedCentralGoogle Scholar
  22. Ghosh M, Sinha S, Jothiramajayam M, Jana A, Nag A, Mukherjee A (2016) Cytogenotoxicity and oxidative stress induced by zinc oxide nanoparticle in human lymphocyte Cells In-Vitro and Swiss Albino Male Mice In-Vivo. Food Chem Toxicol 97:286–296PubMedCrossRefPubMedCentralGoogle Scholar
  23. Gimbert LJ, Hamon RE, Casey PS, Worsfold PJ (2007) Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation. Environ Chem 4:8–10CrossRefGoogle Scholar
  24. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222PubMedCrossRefPubMedCentralGoogle Scholar
  25. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2010) Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ Toxicol Chem 29(5):1036–1048PubMedPubMedCentralGoogle Scholar
  26. Gottschalk F, Sun TY, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300PubMedCrossRefPubMedCentralGoogle Scholar
  27. Gottschalk F, Lassen C, Kjoelholt J, Christensen F, Nowack B (2015) Modeling flows and concentrations of nine engineered nanomaterials in the danish environment. Int J Environ Res Public Health 12(5):5581–5602PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gupta M, Tomar RS, Kaushik S, Mishra RK, Sharma D (2018) Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Front Microbiol 9:2030PubMedPubMedCentralCrossRefGoogle Scholar
  29. Handy RD, Shaw BJ (2007) Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc 9(2):125–144CrossRefGoogle Scholar
  30. Hanna SK, Miller RJ, Zhou D, Keller AA, Lenihan HS (2013) Accumulation and toxicity of metal oxide nanoparticles in a soft-sediment estuarine amphipod. Aquat Toxicol 142:441–446PubMedCrossRefPubMedCentralGoogle Scholar
  31. Hoet PHM, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles-known and unknown health risks. J Nanobiotechnol 2(1):12CrossRefGoogle Scholar
  32. Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42:586–591CrossRefGoogle Scholar
  33. Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39(1):1–23CrossRefGoogle Scholar
  34. Jośko I, Oleszczuk P, Skwarek E (2016) The bioavailability and toxicity of ZnO and Ni nanoparticles and their bulk counterparts in different sediments. J Soils Sediments 16:1798–1808CrossRefGoogle Scholar
  35. Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Am Chem Soc 45:776–781Google Scholar
  36. Kairyte K, Kadys A, Luksiene Z (2013) Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J Photochem Photobiol B 128:78–84PubMedCrossRefPubMedCentralGoogle Scholar
  37. Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70CrossRefGoogle Scholar
  38. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692CrossRefGoogle Scholar
  39. Khare P, Sonane M, Nagar Y, Moin N, Ali S, Gupta KC, Satish A (2015) Size dependent toxicity of zinc oxide nano-particles in soil nematode Caenorhabditis elegans. Nanotoxicology 9:423–432PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kool PL, Diez Ortiz M, van Gestel CAM (2011) Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ Pollut 159:2713–2719PubMedCrossRefPubMedCentralGoogle Scholar
  41. Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3(3):159CrossRefGoogle Scholar
  42. Majedi SM, Lee HK, Kelly BC (2012) Chemometric analytical approach for the cloud point extraction and inductively coupled plasma mass spectrometric determination of zinc oxide nanoparticles in water samples. Anal Chem 84:6546–6552PubMedCrossRefPubMedCentralGoogle Scholar
  43. Manzoor U, Siddique S, Ahmed R, Noreen Z, Bokhari H, Ahmad I (2016) Antibacterial, structural and optical characterization of mechano-chemically prepared ZnO nanoparticles. PLoS One 11(5):e0154704PubMedPubMedCentralCrossRefGoogle Scholar
  44. McKee MS, Juliane F (2016) Impacts of metal-based engineered nanomaterials on soil communities. Environ Sci Nano 3:506Google Scholar
  45. Miglietta ML, Rametta G, Manzo S, Salluzzo A, Rimauro J, Francia GD (2015) Methodological issues about techniques for the spiking of standard OECD soil with nanoparticles: evidence of different behaviours. J Nanopart Res 17:312CrossRefGoogle Scholar
  46. Navale GR, Thripuranthaka M, Late DJ, Shinde SS (2015) Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol Nanomed 3(1):1033Google Scholar
  47. Nowack B, Bucheli TD (2012) The occurrence, behavior, and effects of engineered nanomaterials in the environment. Adv Nanotechnol Environ 150(1):183–218Google Scholar
  48. Paula S, Tourinho Y, Cornelis AM, Van Gestel Z, Lofts S, Claus Svendsen K, Amadeu MVM, Soares Y, Susana L (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31(8):1679–1692CrossRefGoogle Scholar
  49. Peng YH, Tsai YC, Hsiung CE, Lin YH, Shih Y (2017) Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. J Hazard Mater 322:348–356PubMedCrossRefPubMedCentralGoogle Scholar
  50. Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. part vi. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90(2):296–303PubMedCrossRefPubMedCentralGoogle Scholar
  51. Rajput VD, Minkina T, Sushkova S, Tsitsuashvili V, Mandzhieva S, Gorovtsov A, Nevidomskaya D (2017) Effect of nanoparticles on crops and soil microbial communities. J Soils Sediments 18:1–9Google Scholar
  52. Rajput VD, Minkinaa TM, Behal A, Sushkovaa SN, Mandzhievaa S, Singh R, Gorovtsov A, Tsitsuashvilia VS, Purvisd WO, Ghazaryane KA, Movsesyan HS (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monit Manag 9:76–84Google Scholar
  53. Read DS, Matzke M, Gweon HS, Newbold LK, Heggelund L, Ortiz MD, Lahive E et al (2016) Soil pH effects on the interactions between dissolved zinc, non-nano and nano-ZnO with soil bacterial communities. Environ Sci Pollut Res Int 23:4120–4128PubMedCrossRefPubMedCentralGoogle Scholar
  54. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:213–902Google Scholar
  55. Royal Society and The Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. https://royalsociety.org/topicspolicy/publications/2004/nanoscience-nanotechnologies/. Accessed 19 Oct 2017
  56. Shen Z, Chen Z, Hou Z, Li T, Lu X (2015) Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front Environ Sci Eng 9(5):912–918CrossRefGoogle Scholar
  57. Shrestha B, Acosta-Martinez V, Cox SB, Green MJ, Li S, Cañas-Carrell JE (2013) An evaluation of the impact of multi-walled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater 261:188–197PubMedCrossRefPubMedCentralGoogle Scholar
  58. Simonin M, Guyonnet JP, Martins JM, Ginot M, Richaume A (2015) Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater 283:529–535PubMedCrossRefPubMedCentralGoogle Scholar
  59. Sirelkhatim A, Shahrom M, Azman S, Noor HMK, Chuo AL, Siti KMB, Habsah H, Dasmawati M (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Micro Nano Lett 7(3):219–242CrossRefGoogle Scholar
  60. Srivastav AK, Kumar M, Ansari NG, Jain AK, Shankar J, Arjaria N, Jagdale P, Singh D (2016) A comprehensive toxicity study of zinc oxide nanoparticles versus their bulk in wistar rats: toxicity study of zinc oxide nanoparticles. Hum Exp Toxicol 35(12):1286–1304PubMedCrossRefPubMedCentralGoogle Scholar
  61. Suman TY, Radhika Rajasree SR, Kirubagaran R (2015) Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol Environ Saf 113:23–30PubMedCrossRefPubMedCentralGoogle Scholar
  62. Tourinho PS, van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro SE (2012) Metal based nanoparticles in soil: fate, behaviour, and effects on soil invertebrates. Environ Toxicol Chem 31(8):1679–1692PubMedCrossRefPubMedCentralGoogle Scholar
  63. Unrine J, Bertsch P, Hunyadi S (2008) Bioavailability, trophic transfer, and toxicity of manufactured metal and metal oxide nanoparticles in terrestrial environments. John Wiley & Sons, New YorkCrossRefGoogle Scholar
  64. Venkataraju JL, Sharath R, Chandraprabha M, Neelufar E, Hazra A, Patra M (2014) Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles. J Biochem Technol 3(5):151–154Google Scholar
  65. Waalewijn-Kool PL, Ortiz MD, Lofts S, van-Gestel CA (2013) The effect of pH on the toxicity of zinc oxide nanoparticles to Folsomia candida in amended field soil. Environ Toxicol Chem 32(10):2349–2355PubMedCrossRefPubMedCentralGoogle Scholar
  66. Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177PubMedCrossRefPubMedCentralGoogle Scholar
  67. Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33CrossRefGoogle Scholar
  68. Yadav T, Mungray AA, Mungray AK (2014) Fabricated nanoparticles. Rev Environ Contam Toxicol 230:83–110PubMedPubMedCentralGoogle Scholar
  69. Zeng X, Zhang F, He N, Zhang B, Liu X, Li X (2016) ZnO nanoparticles of different shapes and their antimycotic property against penicillium and mucor. Nanosci Nanotechnol Lett 8(8):688–694CrossRefGoogle Scholar
  70. Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA, Renato JA, Gardea-Torresdey JL (2012) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8CrossRefGoogle Scholar
  71. Zhou XH, Huang BC, Zhou T, Liu YC, Shi HC (2015) Aggregation behavior of engineered nanoparticles and their impact on activated sludge in wastewater treatment. Chemosphere 119:568–576PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Monika Gupta
    • 1
  • Divakar Sharma
    • 2
  1. 1.Amity Institute of BiotechnologyAmity University Madhya PradeshGwaliorIndia
  2. 2.Interdisciplinary Biotechnology UnitsAligarh Muslim UniversityAligarhIndia

Personalised recommendations