Bioproduction of Silver Nanoparticles and Its Potential Applications in Agriculture

  • Abir Moawad Partila


Agriculture is the backbone of most developing countries. Resistance was developed by microbes that affect crops against synthetic antibiotics. Nanotechnology in the field of agriculture focuses currently on target farming that involves the use of nanoparticles like silver nanoparticles with biogenic synthesis of silver nanoparticles which is the best method over chemical and physical methods; it was found that nanoparticles were effective against fungal and bacterial infections and crop insect.


Silver nanoparticles Agriculture Plant Bioproduction Anti-insect Antifungal Antibacterial 


  1. Abo-State MAM, Partila AM (2015) Microbial production of silver nanoparticles by Pseudomonas aeruginosa cell free extract. J Ecol Health Environ 3(3):91–98Google Scholar
  2. Abo-State MAM, Partila AM (2017) The bactericidal activities of silver nanoparticles (AgNPs) produced by cell-free supernatant of Pseudomonas aeruginosa and sterilization by the effect of radiation. J Ecol Health Environ 5(2):49–56Google Scholar
  3. Abo-State MAM, Partila AM (2018) Production of silver nanoparticles (AgNPs) by certain bacterial strains and their characterization. Novel Res Microbiol J 1(2):19–32CrossRefGoogle Scholar
  4. Ali SM, Yousef NMH, Nafady NA (2015) Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. J Nanomater. Scholar
  5. Al-Othman MR, Abd El-Aziz ARM, Mahmoud MA, Eifan SA, El-Shikh MA, Majrashi M (2014) Application of silver nanoparticles as antifungal and anti aflatoxin B1 produced by Aspergillus flavus. Dig J Nanomater Biostruct 9(1):151–157Google Scholar
  6. Ankamwar B, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica Officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671PubMedCrossRefGoogle Scholar
  7. Arab MM, Yadollahi A, Hosseini-Mazinani M, Bagheri S (2014) Effects of antimicrobial activity of silver nanoparticles on in vitro establishment of G · N15 (hybrid of almond · peach) root stock. J Genet Eng Biotechnol 12:103–110CrossRefGoogle Scholar
  8. Balashanmugam P, Balakumaran MD, Murugan R, Dhanapal K, Kalaichelvana PT (2016) Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiol Res 192:52–64PubMedCrossRefGoogle Scholar
  9. Banasiuk R, Krychowiak M, Swigon D, Tomaszewicz W, Michalak A, Chylewska A, Ziabka M, Lapinski M, Koscielska B, Magdalena N, Krolicka A (2017) Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activity. Arab J Chem.
  10. Benelli G (2017) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34CrossRefGoogle Scholar
  11. Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark WJ et al (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44(22):8718–8723PubMedCrossRefPubMedCentralGoogle Scholar
  12. Byczyńska A (2017) Nano-silver as a potential biostimulant for plant. Review. World Sci News 86(3):180–192Google Scholar
  13. Catauro M, Raucci MG, De Gaaetano FD, Marotta A (2005) Sol-gel processing of drug delivery materials and release kinetics. J Mater Sci Mater Med 16(3):261–265PubMedCrossRefGoogle Scholar
  14. Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Env Chem Lett 15(1):15–22CrossRefGoogle Scholar
  15. Ciftci H, Turk M, Tame U, Karahan S, Menemen Y (2013) Silver nanoparticles: cytotoxic, apoptotic and necrotic effects on MCF-7 cells. Turk J Biol 37:573–581CrossRefGoogle Scholar
  16. Cilerdzˇ ic´ J, Vukojevic´ J, Stajic´ M, Stanojkovic´ T, Glamocˇ lija J (2014) Biological activity of Ganoderma lucidum basidiocarps cultivated on alternative and commercial substrate. J Ethnopharmacol 155:312–319CrossRefGoogle Scholar
  17. Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S et al (2017) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10:862–876CrossRefGoogle Scholar
  18. Davies RL, Etris SF (1997) The development and functions of silver in water purification and disease control. Catal Today 36:107–114CrossRefGoogle Scholar
  19. Desai R, Mankad V, Gupta S, Jha P (2012) Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanosci Nanotechnol Lett 4:30–34CrossRefGoogle Scholar
  20. Gade A, Gaikwad S, Duran N, Rai M (2013) Screening of different species of Phoma for synthesis of silver nanoparticles. Biotechnol Appl Biochem 60:482–493PubMedCrossRefPubMedCentralGoogle Scholar
  21. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140CrossRefGoogle Scholar
  22. Govindarajan M, Benelli G (2016) One-pot green synthesis of silver nanocrystals using Hymenodictyon orixense: a cheap and effective tool against malaria, chikungunya and Japanese encephalitis mosquito vectors? RSC Adv 6:59021–59029CrossRefGoogle Scholar
  23. Govindarajan M, Nicoletti M, Benelli G (2016) Bio-physical characterization of poly-dispersed silver nanocrystals fabricated using Carissa spinarum: a potent tool against mosquito vectors. J Clust Sci 27:745–761CrossRefGoogle Scholar
  24. Gul HT, Saeed S, Khan FZA, Manzoor SA (2014) Potential of nanotechnology in agriculture and crop protection: a review. Appl Sci Bus Econ 1(2):23–28Google Scholar
  25. Hendrickson C, Huffstutler G, Bunderson L (2017) Emerging applications and future roles of nanotechnologies in agriculture. Agric Res Technol 11:1Google Scholar
  26. Hindi KM, Ditto AJ, Panzner MJ (2009) The antimicrobial efficacy of sustained release silver carbene complex-loaded L-tyrosine polyphosphate nanoparticles: characterization, in vitro and in vivo studies. Biomaterials 30:3771–37719PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hojjat SS (2015) Impact of silver nanoparticles on germinated fenugreek seed. Int J Agric Crop Sci 8:627–630Google Scholar
  28. Jiang H, Wong A, Denes F (2004) Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J Appl Polym Sci 93:1411–1422CrossRefGoogle Scholar
  29. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytogenic fungi. Plant Dis 93:1037–1043PubMedCrossRefPubMedCentralGoogle Scholar
  30. Jogaiah S, Kurjogi M, Abdelrahman M, Nagabhushana (2018) Hanumanthappa Ganoderma applanatum-mediated green synthesis of silver nanoparticles: Structural characterization, and in vitro and in vivo biomedical and agrochemical properties. Lam-Son Phan Tran Arab J Chem. Scholar
  31. Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB et al (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17CrossRefGoogle Scholar
  32. Kaviya S, Santhanalakshmi J, Viswanathan B (2011) Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with D-sorbitol: study of antibacterial activity. J Nanotechnol 2011:1–5CrossRefGoogle Scholar
  33. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  34. Krishnaraj C, Jagan E, Rajasekar S, Selvakumar P, Kalaichelvan P, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 76:50–56PubMedCrossRefPubMedCentralGoogle Scholar
  35. Kulkarni AP, Srivastava AA, Zunjarrao RS (2012) Plant mediated synthesis of silver nanoparticles and their applications. Int J Pharm Bio Sci 3(4):121–127Google Scholar
  36. Kumar N, Vazhacharickal P, Mathew J, Joy J (2015) Synthesis of silver nano particles from neem leaf (Azadirachta indica) extract and its antibacterial activity CIB tech. J Biotechnol 4:20–31Google Scholar
  37. Lalitha A, Subbaiya R, Ponmurugan P (2013) Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti-bacterial and antioxidant property. Int J Curr Microbiol Appl Sci 2:228–235Google Scholar
  38. Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499PubMedCrossRefGoogle Scholar
  39. Logeswari P, Silambarasan S, Abraham J (2013) Green synthesis of silver nanoparticles: a review. Sci Iranica 20:1049–1054Google Scholar
  40. Mankad M, Patil G, Patel D, Patel P, Patel A (2018) Comparative studies of sunlight mediated green synthesis of silver nanoparticles from Azadirachta indica leaf extract and its antibacterial effect on Xanthomonas oryzae pv. Oryzae. Arab J Chem.
  41. Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Bio fabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat, PLoS One Published: May 19, 2014, Scholar
  42. Mittal A, Chisti Y, Banerjee C (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356CrossRefGoogle Scholar
  43. Mroczek–Sosnowska N, Jaworski S, Siennicka A, Gondek A (2013) Unikalne właściwości nanocząstek srebra. Polskie Drobiarstwo 20(2):6–8Google Scholar
  44. Mukherjee P, Mandal D, Senapati S, Sainkar R, Khan M, Parishcha R, Ajaykumar P, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the Mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519CrossRefGoogle Scholar
  45. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800CrossRefGoogle Scholar
  46. Murugan K, Panneerselvam C, Samidoss CM, Madhiyazhagan P, Suresh U, Roni M, Chandramohan B, Subramaniam J, Dinesh D, Rajaganesh R, Paulpandi M, Wei H, Aziz AT, SalehAlsalhi M, Devanesan S, Nicoletti M, Pavela R, Canale A, Benelli G (2016) In vivo and in vitro effectiveness of Azadirachta indica synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res Vet Sci 106:14–22PubMedCrossRefGoogle Scholar
  47. Nabikhan A, Kandasamy K, Raj A, Alikunhi N (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B: Biointerfaces 79:488–493PubMedCrossRefGoogle Scholar
  48. Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity and, Functional applications, vol 2. Springer, New Delhi, pp 289–300CrossRefGoogle Scholar
  49. Park HJ, Kim SH, Kim HJ, Seong C (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol 22(3):295–302CrossRefGoogle Scholar
  50. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V et al (2012) Effect of nano-scale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927CrossRefGoogle Scholar
  51. Quester K, Avalos-Borja M, Castro-Longori E (2016) Controllable biosynthesis of small silver nanoparticles using fungal extract. J Biomater Nanobiotechnol 7:118–125CrossRefGoogle Scholar
  52. Ramanibai R, Velayutham K (2015) Bioactive compound synthesis of Ag nanoparticles from leaves of Melia azedarach and its control for mosquito larvae. Res Vet Sci 98:82–88PubMedCrossRefPubMedCentralGoogle Scholar
  53. Rawani A, Ghosh A, Chandra G (2013) Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum (Solanaceae: Solanales). Acta Trop 128:613–622PubMedCrossRefPubMedCentralGoogle Scholar
  54. Sadeghi B, Gholamhoseinpoor F (2015) A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta Part A: Mol Biomol Spectrosc 134:310–315CrossRefGoogle Scholar
  55. Salari Z, Danafar F, Dabaghi S, Ataei S (2016) Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. J Saudi Chem Soc 20:459–464CrossRefGoogle Scholar
  56. Saradhadevi M, Gnanadesigan M, Kapildev G, Vasanth D (2017) Dataset on antitumor properties of silver nanoparticles from Gloriosa superba (L.) seed on Dalton Lymphoma Ascites (DLA) tumor: facile and biocompatible approach. Data Brief 14:524–530PubMedPubMedCentralCrossRefGoogle Scholar
  57. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53PubMedPubMedCentralCrossRefGoogle Scholar
  58. Senthilkumar SR, Sivakumar T (2014) Green tea (Camellia sinensis) mediated synthesis of zinc oxide (Zn O) nanoparticles and studies on their antimicrobial activitiesint. J Pharm Sci 6:461–465Google Scholar
  59. Sharon A, Finkelstein A, Shlezinger N, Hatam I (2009) Fungal apoptosis: function, genes and gene function. FEMS Microbiol Rev 33(5):833–854PubMedCrossRefPubMedCentralGoogle Scholar
  60. Shetty K, Rangaswami G (1971) In vitro and in vivo activities of streptocycline on bacterial blight of rice caused by Xanthomonas oryzae. Indian Phytopathol 24:145–152Google Scholar
  61. Singhal G, Riju B, Kasariya K, Sharma AR, Singh RP (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 13:2981–2988CrossRefGoogle Scholar
  62. Sre P, Reka M, Poovazhagi R, Kumar M, Murugesan K (2015) Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim Acta Part A: Mol Biomol Spectrosc 135:1137–1144CrossRefGoogle Scholar
  63. Sriram T, Pandidurai V (2017) In vitro growth analysis of Zea mays L. using silver nanoparticles. Int J pharma Bio Sci 8(3b):30–37Google Scholar
  64. Sundin GW, Bender CL (1993) Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. Syringae Appl Environ Microbiol 59:1018–1024PubMedPubMedCentralGoogle Scholar
  65. Swing J, Van den Mooter M, Vauterin L, Hoste B, Gillis M, Mew TW, Kersters K (1990) Reclassification of the casual agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. orzicola) of rice as pathovars of Xanthomonas oryzae sp. Nov., nom. rev. Int J Syst Bacteriol 40:309–311CrossRefGoogle Scholar
  66. Tagami Y, Mizukami T (1962) Historical review of the researches on bacterial leaf blight of rice caused by Xanthomonas oryzae (Uyedaet Ishiyamd) Dowson [English translation by H. Fujii].Ebook, Sustainable approaches to controlling plant pathogenic bacteria. In: Kannan VR, Bastas KK (eds) Report of Ministry of Agriculture Department of Japan, vol 10. CRC Press, Taylor and Francis Group, New York, pp 1–112Google Scholar
  67. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300PubMedPubMedCentralCrossRefGoogle Scholar
  68. Tran QH, Nguyen VQ, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4:33001CrossRefGoogle Scholar
  69. Vadlapudi V, Amanchy R (2017) Synthesis, characterization and antibacterial activity of silver nanoparticles from red algae, Hypnea Musciformis. Adv Biol Res 11:242–249Google Scholar
  70. Van der Zande M, Vandebriel RJ, Van DE (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6:7427–7442PubMedCrossRefPubMedCentralGoogle Scholar
  71. Velmurugan NG, Kumar G, Han S (2009) Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles. Iran Polym J 18:383–392Google Scholar
  72. Wang Q, Ma X, Zhang W, Pei H, Chen Y (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4(10):1105–1112PubMedCrossRefPubMedCentralGoogle Scholar
  73. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10(6):713–717CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Abir Moawad Partila
    • 1
  1. 1.Lecturer of MicrobiologyNational Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA)CairoEgypt

Personalised recommendations