Advertisement

Epidermal Growth Factor Receptor: Promising Targets for Non-Small-Cell Lung Cancer

  • Della Grace Thomas Parambi
  • K. M. Noorulla
  • Md. Sahab Uddin
  • Bijo Mathew
Chapter

Abstract

Cancer-related mortality is a worldwide health issue; among those, lung cancer is devastatingly caused by regular smoking. It is quite surprising that a considerable category of patients with non-small-cell lung cancer (NSCLC) has never had a habit of smoking. In these patients, an elevated level of small drifts or mutations in the epidermal growth factor receptor (EGFR) is observed. The genetic makeup and development of EGFR tyrosine kinase inhibitors (TKIs) are considered as promising drug candidates for the treatment of wild-type NSCLC. The aim of this chapter is to summarize EGFR and its physiological and pathological roles, including the acquired resistance of various generations of TKIs with future perspectives of EGFR-targeted therapeutic approaches.

Keywords

Epidermal growth factor receptor  Tyrosine kinase inhibitors  Non-small cell lung cancer  Cancer chemotherapy 

References

  1. 1.
    Uddin MS, Upaganlawar AB (Eds) (2019) Oxidative stress and antioxidant defense: biomedical value in health and diseases. Nova Science Publishers, USAGoogle Scholar
  2. 2.
    Jemal A, Tiwari RC, Murray T et al (2004) Cancer statistics, 2004. CA Cancer J Clin 54:8–29CrossRefGoogle Scholar
  3. 3.
    Gupta S (2001) Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci 69(25–26):2957–2964CrossRefGoogle Scholar
  4. 4.
    Gordalize M (2007) Natural products as leads to anticancer drugs. Clin Transl Oncol 9(12):767–776CrossRefGoogle Scholar
  5. 5.
    Ferlay J, Shin HR, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008. Int J Cancer 127:2893–2917CrossRefGoogle Scholar
  6. 6.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29CrossRefGoogle Scholar
  7. 7.
    Molina JR, Yang P, Cassivi SD et al (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594CrossRefGoogle Scholar
  8. 8.
    Thomas A, Liu SV, Subramaniam DS, Giaccone G (2015) Refining the treatment of NSCLC according to histological and molecular subtypes. Nat Rev Clin Oncol 12(9):511–526CrossRefGoogle Scholar
  9. 9.
    Tovar I, Exposito J, Jaen J et al (2014) Pattern of use of radiotherapy for lung cancer: a descriptive study. BMC Cancer 14:697CrossRefGoogle Scholar
  10. 10.
    Parente Lamelas I, Abal Arca J, Firvida Perez JL (2012) Directed therapies in lung cancer: new hope. Arch Bronconeumol 48:367–371CrossRefGoogle Scholar
  11. 11.
    Chung TW, Tan KT, Chan HL et al (2014) Induction of indoleamine 2,3-dioxygenase (IDO) enzymatic activity contributes to interferon-gamma induced apoptosis and death receptor 5 expression in human non-small cell lung cancer cells. Asian Pac J Cancer Prev 15:7995–8001CrossRefGoogle Scholar
  12. 12.
    Slodkowska J, Rojo MG (2011) Digital pathology in personalized cancer therapy. Folia Histochem Cytobiol 49:570–578CrossRefGoogle Scholar
  13. 13.
    Roskoski R Jr (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 79:34–74CrossRefGoogle Scholar
  14. 14.
    Tebbutt N, Pedersen MW, Johns TG (2013) Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer 13:663CrossRefGoogle Scholar
  15. 15.
    Elena G, Roberta A et al (2013) Epidermal growth factor receptor tyrosine kinase inhibitors: current status and future perspectives in the development of novel irreversible inhibitors for the treatment of mutant non-small cell lung cancer. Curr Pharm Des 19(5):818–832CrossRefGoogle Scholar
  16. 16.
    Inamura K, Ninomiya H, Ishikawa Y et al (2010) Is the epidermal growth factor receptor status in lung cancers reflected in clinicopathologic features? Arch Pathol Lab Med 134:66–72PubMedGoogle Scholar
  17. 17.
    Gupta R, Dastane AM, Forozan F et al (2009) Evaluation of EGFR abnormalities in patients with pulmonary adenocarcinoma: the need to test neoplasms with more than one method. Mod Pathol 22:128–133CrossRefGoogle Scholar
  18. 18.
    Shigematsu H, Gazdar AF (2006) Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer 118:257–262CrossRefGoogle Scholar
  19. 19.
    Ladanyi M, Pao W (2008) Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond. Mod Pathol 21:S16–S22CrossRefGoogle Scholar
  20. 20.
    Massarelli E, Varella-Garcia M, Tang X et al (2007) KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin Cancer Res 13:2890–2896CrossRefGoogle Scholar
  21. 21.
    Lax I, Burgess WH et al (1988) Localization of a major receptor-binding domain for epidermal growth factor by affinity labeling. Mol Cell Biol 8(4):1831–1834CrossRefGoogle Scholar
  22. 22.
    Dokala A, Thakur SS (2017) Extracellular region of epidermal growth factor receptor: a potential target for anti-EGFR drug discovery. Oncogene 36:2337–2344CrossRefGoogle Scholar
  23. 23.
    Chen L, Fu W et al (2018) Recent progress of small-molecule epidermal growth factor receptor (EGFR) inhibitors against C797S resistance in non-small-cell lung cancer. J Med Chem 61(10):4290–4300CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Della Grace Thomas Parambi
    • 1
  • K. M. Noorulla
    • 2
  • Md. Sahab Uddin
    • 3
    • 4
  • Bijo Mathew
    • 5
  1. 1.Department of Pharmaceutical ChemistryJouf UniversitySakakaSaudi Arabia
  2. 2.Medicinal Chemistry Division, Department of Pharmacy, College of Health SciencesArsi UniversityAsellaEthiopia
  3. 3.Department of PharmacySoutheast UniversityDhakaBangladesh
  4. 4.Pharmakon Neuroscience Research NetworkDhakaBangladesh
  5. 5.Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical ChemistryAhalia School of PharmacyPalakkadIndia

Personalised recommendations