Advertisement

The Use of Ozone as Redox Modulator in the Treatment of the Chronic Obstructive Pulmonary Disease (COPD)

  • Emma BorrelliEmail author
Chapter

Abstract

Chronic obstructive pulmonary disease (COPD) is a complex and progressive disease associated with an overproduction of reactive oxygen species (ROS), circulating pro-inflammatory cytokines, and acute-phase proteins. This generalized oxidative/inflammatory status is accompanied by a downregulation of the cellular antioxidant transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2).Therapeutic agents that activate Nrf2 may have a pivotal role in the rebalance of the altered redox system. This chapter explores how the ozone can act as an endogenous redox modulator in the integrated treatment of COPD.

Keywords

Oxidative stress Ozone therapy Antioxidants Reactive oxygen species Chronic obstructive pulmonary disease 

References

  1. 1.
    Reinhard CT, Planavsky NJ, Olson SL et al (2016) Earth’s oxygen cycle and the evolution of animal life. Proc Natl Acad Sci U S A 113:8933–8938PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Taverne YJ, Merkus D, Bogers AJ et al (2018) Reactive oxygen species: radical factors in the evolution of animal life. Bioessays 40.  https://doi.org/10.1002/bies.201700158CrossRefGoogle Scholar
  3. 3.
    Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine, 5th edn. Clarendon Press, OxfordCrossRefGoogle Scholar
  4. 4.
    Halliwell B (1996) Free radicals, proteins and DNA: oxidative damage versus redox regulation. Biochem Soc Trans 24:1023–1027PubMedCrossRefGoogle Scholar
  5. 5.
    Holguin F (2013) Oxidative stress in airway diseases. Ann Am Thorac Soc 10:S150–S157PubMedCrossRefGoogle Scholar
  6. 6.
    van der Vliet A, O’Neill CA, Cross CE et al (1999) Determination of low – molecular mass antioxidant concentrations in human respiratory tract lining fluids. Am J Physiol 276:L289–L296PubMedGoogle Scholar
  7. 7.
    Kinnula VL, Crapo JD (2003) Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med 167:1600–1619PubMedCrossRefGoogle Scholar
  8. 8.
    Kollek I, Sinha P, Rustow B (2002) Vitamin E as an antioxidant of the lung: mechanisms of vitamin E delivery to alveolar type II cells. Am J Respir Crit Care Med 166:S62–S66CrossRefGoogle Scholar
  9. 9.
    Rahman I, Adcock IM (2006) Oxidative stress and redox regulation of lung inflammation in COPD. Eur Rep J 28:219–242CrossRefGoogle Scholar
  10. 10.
    Kinnula VL, Fattman CL, Tan RJ et al (2005) Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy. Am J Respir Crit Care Med 172:417–422PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Esme H, Cemek M, Sezer M et al (2008) High levels of oxidative stress in patients with advanced lung cancer. Respirology 13:112–116PubMedCrossRefGoogle Scholar
  12. 12.
    Kirkham PA, Barnes PJ (2013) Oxidative stress in COPD. Chest 1:266–273CrossRefGoogle Scholar
  13. 13.
    Fischer BM, Pavlisko E, Voynow JA (2011) Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance and inflammation. Int J Chron Obstruct Pulmon Dis 6:413–421PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    van Eeden SF, Sin DD (2008) Chronic obstructive pulmonary disease: a chronic systemic inflammatory disease. Respiration 75:224–238PubMedCrossRefGoogle Scholar
  15. 15.
    Kido T, Tamagawa E, Bai N (2011) Particulate matter induces translocation of IL-6 from the lung to systemic circulation. Am J Respir Cell Mol Biol 44:197–204PubMedCrossRefGoogle Scholar
  16. 16.
    Iizuka T, Ishii Y, Itoh K et al (2005) Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells 10:1113–1125PubMedCrossRefGoogle Scholar
  17. 17.
    Cho HY, Kleeberger SR (2010) Nrf2 protects against airway disorders. Toxicol Appl Pharmacol 244:43–56PubMedCrossRefGoogle Scholar
  18. 18.
    Itoh K, Chiba T, Takahashi S et al (1997) An Nrf2/smal Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322CrossRefGoogle Scholar
  19. 19.
    Malhotra D, Thimmulappa R, Navas-Ancien A et al (2008) Decline in Nrf2-regualted antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, dj-1. Am J Respir Crit Care Med 178:592–604PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Goven D, Boutten A, Lecon-Malas V et al (2008) Altered Nrf2/Keap 1-Bach1 equilibrium in pulmonary emphysema. Thorax 63:916–924CrossRefGoogle Scholar
  21. 21.
    Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARA pathway. Annu Rev Pharmacol Toxicol 47:89–116CrossRefGoogle Scholar
  22. 22.
    Venugopal R, Jaiswal AK (1996) Nrf1 and Nrf2 positively and c-fos and fra1 negatively regulate the human antioxidant response element -mediated expression of NAD(P): Quinone oxidoreductase 1 gene. Proc Natl Acad Sci U S A 93:14960–14965PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Suzuki M, Betsuyaku T, Ito Y et al (2008) Down-regulated Nf-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 39:673–682CrossRefGoogle Scholar
  24. 24.
    Rahman I, MacNee W (2012) Antioxidant pharmacological therapies for COPD. Curr Opin Pharmacol 12:256–265PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Biswas A, Hwang JW, Kirkham PA et al (2013) Pharmacological and dietary antioxidant therapies for chronic obstructive pulmonary disease. Curr Med Chem 20:1496–1530PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Biswal S, Timmulappa RK, Harvey CJ (2012) Experimental therapeutics of Nrf2 as a target for prevention of bacterial exacerbations in COPD. Proc Am Thorac Soc 9:47–51PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Suzuki M, Betsuyaku T, Ito Y et al (2009) Curcumin attenuates elastase-and cigarette smoke-induced pulmonary emphysema in mice. Am J Physiol Lung Cell Mol Physiol 296:L614–L623PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tabak C, Arts IC, Smit HA et al (2001) Chronic obstructive pulmonary disease and intake of catechins, flavonols and flavones: the Morgen study. Am J Respir Crit Care Med 164:61–64PubMedCrossRefGoogle Scholar
  29. 29.
    Schols AM (2013) Nutrition as a metabolic modulator in COPD. Chest 144:1340–1345PubMedCrossRefGoogle Scholar
  30. 30.
    Dianzani MU (2003) 4-Hydroxynonenal from pathology to physiology. Mol Aspects Med 24:263–272PubMedCrossRefGoogle Scholar
  31. 31.
    Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49:835–842PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Brigelius-Flohè R, Flohè L (2011) Basic principles and emerging concepts in the redox control of transcription factors. Antioxidants and Redox Signaling 15:2335–2381PubMedCrossRefGoogle Scholar
  33. 33.
    Taguchi K, Yamamoto M (2011) Molecular mechanisms of Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16:123–140PubMedCrossRefGoogle Scholar
  34. 34.
    Menegon S, Columbano A, Giordano S (2016) The dual roles of Nrf2 in cancer. Trends Mol Med 22:578–593PubMedCrossRefGoogle Scholar
  35. 35.
    Bocci V (1998) Is ozone therapy therapeutic ? Perspect Biol Med 42:131–143PubMedCrossRefGoogle Scholar
  36. 36.
    Bocci V, Aldinucci C, Borrelli E et al (2001) Ozone in medicine. Ozone Sci Eng 23:207–217CrossRefGoogle Scholar
  37. 37.
    Bocci V (2006) Scientific and medical aspects of ozone therapy. State of art. Arch Med Res 37:425–435PubMedCrossRefGoogle Scholar
  38. 38.
    Borrelli E, Diadori A, Zalaffi A (2012) Effect of major ozonated autohemotherapy in the treatment of dry age related macular degeneration: a randomized controlled clinical study. Int J Ophthalmol 5:708–713PubMedPubMedCentralGoogle Scholar
  39. 39.
    Borrelli E, Bocci V (2014) Oxygen ozone therapy in the treatment of chronic obstructive pulmonary disease: an integrative approach. Am J Clin Exp Med 2:9–13CrossRefGoogle Scholar
  40. 40.
    Borrelli E, De Monte A, Bocci V (2015) Oxygen ozone therapy in the integrated therapy of chronic ulcer: a case series report. Int J Rec Sci Res 5:4132–4136Google Scholar
  41. 41.
    Giunta R, Coppola A, Luongo C et al (2001) Ozonized autohemotransfusion improves hemorheological parameters and oxygen delivery to tissues in patients with peripheral occlusive arterial disease. Ann Hematol 80:745–748PubMedCrossRefGoogle Scholar
  42. 42.
    Bocci V (2005) Is it true that ozone is always toxic? The end of a dogma. Toxicol Appl Pharmacol 208:117–126CrossRefGoogle Scholar
  43. 43.
    Bocci V, Valacchi G, Corradeschi F et al (1998) Studies on biological effects of ozone 7. Generation of reactive oxygen species (ROS) after exposure of human blood to ozone. J Biol Regul Homeost Agents 12:67–75PubMedGoogle Scholar
  44. 44.
    Bocci V, Borrelli E, Travagli V et al (2009) The ozone paradox. Ozone is a strong oxidant as well as a medical drug. Med Res Rev 29:646–682PubMedCrossRefGoogle Scholar
  45. 45.
    Borrelli E, Bocci V (2010) Basic biological and therapeutic effects of ozone therapy in medicine. In: Ozone science and technology. Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO. EOLSS Publishers, OxfordGoogle Scholar
  46. 46.
    Sirinki N, Suzuki T, Takama K et al (1998) Susceptibilities of plasma antioxidants and erythrocytes constituents to low levels of ozone. Hematologia 29:229–239Google Scholar
  47. 47.
    Bocci V, Borrelli E (2015) A practical approach for restoring homeostasis in diseases characterized by a chronic oxidative stress. J Adv Med Pharm Sci 2:135–143Google Scholar
  48. 48.
    Bocci V (2011) Ozone: a new medical drug, 2nd edn. Springer, DordrechtCrossRefGoogle Scholar
  49. 49.
    Smith NL, Wilson AL, Gandhi J et al (2017) Ozone therapy: an overview of pharmacodynamics, current research and clinical utility. Med Gas Rev 7:212–219CrossRefGoogle Scholar
  50. 50.
    Akbudak IH, Kucukatay V, Kilic-Erkek O et al (2018) Investigation of the effects of major ozone autohemotherapy application on erythrocyte deformability and aggregation. Clin Hemorheol Microcirc.  https://doi.org/10.3233/CH-180417PubMedCrossRefGoogle Scholar
  51. 51.
    Pecorelli A, Bocci V, Acquaviva A et al (2013) Nrf2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells. Toxicol Appl Pharmacol 267:30–40PubMedCrossRefGoogle Scholar
  52. 52.
    Bocci V, Aldinucci C (2006) Biochemical modifications induced in human blood by oxygenation-ozonation. J Biochem Mol Toxicol 20:133–138PubMedCrossRefGoogle Scholar
  53. 53.
    Pinto-Plata VM, Cote C, Cabral H et al (2004) The 6-min walk distance: change over time and value as a predictor of survival in severe COPD. Eur Respir J 23:28–33PubMedCrossRefGoogle Scholar
  54. 54.
    Holland AE, Hill CJ, Rasekaba A et al (2010) Updating the minimal important difference for six-minute walk distance in patients with chronic obstructive pulmonary disease. Arc Phys Med Rehabil 91:221–225CrossRefGoogle Scholar
  55. 55.
    Jones PW (2005) St. George’s respiratory questionnaire: MCID. COPD-J Chron Obstruct Pulmon Dis 2:111–124CrossRefGoogle Scholar
  56. 56.
    Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) (2017). Available from: https://goldcopd.org
  57. 57.
    Lee IT, Yang CM (2013) Inflammatory signalings involved in airway and pulmonary diseases. Mediators Inflamm. 2013:791231PubMedPubMedCentralGoogle Scholar
  58. 58.
    Koskela J, Kilpelainen M, Kupiainen H et al (2014) Co -morbidities are the key nominators of the health related quality of life in mild and moderate COPD. BMC Pulm Med 14:102PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provide an interface between redox and intermediary metabolism. Trends Biochem Sci 214:199–218CrossRefGoogle Scholar
  60. 60.
    Bocci V, Borrelli E (2015) It is time that Health Authorities promote the use of oxygen ozone therapy as an integrative therapy of orthodox drugs. Br J Med Med Res 10:1–9CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Medical BiotechnologiesUniversity of SienaSienaItaly

Personalised recommendations