Advertisement

Reactive Oxygen Species (ROS): Modulator of Response to Cancer Therapy in Non-Small-Cell Lung Carcinoma (NSCLC)

  • Shamee Bhattacharjee
Chapter

Abstract

Oxidative stress, caused by an imbalance between oxidants and antioxidants, is implicated in the etiology and progression of many types of cancer including lung cancer. The most common type of lung cancer, NSCLC, is the leading cause of cancer-related deaths worldwide. The lung tissue is particularly vulnerable to oxidative stress because of its direct interface with ambient air which exposes it to a variety of oxidants. In order to protect itself from oxidative stress, lung tissue is equipped with a robust endogenous antioxidant defense system mostly controlled by the redox-sensitive transcription factor Nrf2 which is negatively regulated by Keap1 protein. Lung cancer cells are reported to contain increased levels of ROS. However, administration of antioxidants has failed to show any obvious effectiveness in the prevention or cure of lung cancer. On the other hand, a prooxidant approach has been proposed to successfully kill cancer cells by generating ROS. Cancer cells, owing to their high basal ROS, are considered to be more vulnerable to the toxic effect of exogenous ROS-generating agents as opposed to normal cells. A major challenge in this mode of therapy is the acquisition of drug resistance in cancer cells. This is attributed to an elevation in the antioxidant system in cancer cells, leading to “redox adaptation,” which facilitates survival under enhanced oxidative stress. Incidentally, lung cancer cells have been reported to exhibit constitutive overexpression of Nrf2. Therefore, impairment of the Nrf2/Keap1 antioxidant pathway might be a promising strategy to control NSCLC. In this chapter, the importance of ROS as a signaling molecule in regulating some of the hallmark feature of cancer, such as proliferation, apoptosis, angiogenesis, metastasis, etc., is discussed. Furthermore, the various ROS-modulating therapeutic approaches to treat NSCLC presently under investigation at experimental and clinical setting are also discussed.

Keywords

Lung cancer NSCLC ROS Oxidative stress Nrf2/Keap1antioxidant pathway 

Notes

Acknowledgments

The author wishes to thank Dr. Deba Prasad Mandal, Assistant Professor, Dept. of Zoology, West Bengal State University, for his valuable comments and inputs in the manuscript.

References

  1. 1.
    Li M, Zhang X, Hu K, Shi M, Dong G, Li D, Zhang P (2018) Prognostic role of snail in lung cancer: protocol for a systematic review. Medicine (Baltimore) 97(28):e11539CrossRefGoogle Scholar
  2. 2.
    Yang P (2009) Epidemiology of lung cancer prognosis: quantity and quality of life. Methods Mol Biol 471:469–486PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Borghetti P, Bonù ML, Roca E, Pedretti S, Salah E, Baiguini A, Greco D, Triggiani L, Maddalo M, Levra NG, Alongi F, Magrini SM, Mm B (2018) Radiotherapy and tyrosine kinase inhibitors in stage IV non-small cell lung cancer: real-life experience. In Vivo 32:159–164PubMedPubMedCentralGoogle Scholar
  4. 4.
    Zappa C, Mousa SA (2016) Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res 5(3):288–300PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Tsvetkova E, Goss GD (2012) Drug resistance and its significance for treatment decisions in non-small-cell lung cancer. Curr Oncol 19(Suppl 1):S45–S51PubMedPubMedCentralGoogle Scholar
  6. 6.
    Villegas L, Stidham T, Nozik-Grayck E (2014) Oxidative stress and therapeutic development in lung diseases. J Pulm Respir Med 4(4):194PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kumari S, Badana AK, Mohan GM, Shailender G, Malla R (2018) Reactive oxygen species: a key constituent in cancer survival. Biomark Insights 13:1177271918755391PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Luanpitpong S, Talbott SJ, Rojanasakul Y, Nimmannit U, Pongrakhananon V, Wang L, Chanvorachote P (2010) Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1. J Biol Chem 285(50):38832–38840PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Misthos P, Katsaragakis S, Milingos N, Kakaris S, Sepsas E, Athanassiadi K, Theodorou D, Skottis I (2005) Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. Eur J Cardiothorac Surg 527:379–383CrossRefGoogle Scholar
  10. 10.
    Chung-man Ho J, Zheng S, Comhair SA, Farver C, Erzurum SC (2001) Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res 61:8578–8585PubMedPubMedCentralGoogle Scholar
  11. 11.
    Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Panieri E, Santoro MM (2016) ROS homeostasis and metabolism: a dangerous liaison in cancer cells. Cell Death Dis 7(6):e2253PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Martinez-Useros J, Li W, Cabeza-Morales M, Garcia-Foncillas J (2017) Oxidative stress: a new target for pancreatic cancer prognosis and treatment. J Clin Med 6(3):pii: E29CrossRefGoogle Scholar
  14. 14.
    Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7(2):97–110PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Cheresh P, Kim SJ, Tulasiram S, Kamp DW (2013) Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta 1832(7):1028–1040PubMedCrossRefGoogle Scholar
  16. 16.
    Bernard K, Hecker L, Luckhardt TR, Cheng G, Thannickal VJ (2014) NADPH oxidases in lung health and disease. Antioxid Redox Signal 20(17):2838–2853PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Carnesecchi S, Pache JC, Barazzone-Argiroffo C (2012) NOX enzymes: potential target for the treatment of acute lung injury. Cell Mol Life Sci 69(14):2373–2385PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Phys Lung Cell Mol Phys 279(6):L1005–L1028Google Scholar
  19. 19.
    Han M, Zhang T, Yang L, Wang Z, Ruan J, Chang X (2016) Association between NADPH oxidase (NOX) and lung cancer: a systematic review and meta-analysis. J Thorac Dis 8(7):1704–1711PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kinnula VL, Crapo JD, Raivio KO (1995) Generation and disposal of reactive oxygen metabolites in the lung. Lab Investig 73:3–19Google Scholar
  21. 21.
    Polimeni M, Gazzano E (2014) Is redox signaling a feasible target for overcoming multidrug resistance in cancer chemotherapy? Front Pharmacol 5:286PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cook IA, Pass HI, Iype SN, Friedman N, Degraff W, Russo A, Mitchell JB (1991) Cellular glutathione and thiol measurements from surgically resected human lung tumor and normal lung tissue. Cancer Res 51:4287–4294PubMedPubMedCentralGoogle Scholar
  23. 23.
    Oberli-Schrammli AE, Joncourt F, Stadler M, Altermatt HJ, Buser K, Ris HB, Schmid U, Cerny T (1994) Parallel assessment of glutathione-based detoxifying enzymes, O6-alkylguanine-DNA alkyltransferase and P-glycoprotein as indicators of drug resistance in tumor and normal lung of patients with lung cancer. Int J Cancer 59:629–636PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Tong YH, Zhang B, Fan Y, Lin NM (2015) Keap1–Nrf2 pathway: a promising target towards lung cancer prevention and therapeutics. Chron Dis Transl Med 1(3):175–186Google Scholar
  25. 25.
    Milkovic L, Zarkovic N, Saso L (2017) Controversy about pharmacological modulation of Nrf2 for cancer therapy. Redox Biol 12:727–732PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270(5234):296–299PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Poole LB, Nelson KJ (2008) Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12(1):18–24PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Adachi M, Fischer EH, Ihle J, Imai K, Jirik F, Neel B, Pawson T, Shen S, Thomas M, Ullrich A, Zhao Z (1996) Mammalian SH2-containing protein tyrosine phosphatases. Cell 85(1):15PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Meng TC, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9(2):387–399PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Schlessinger J (2002) Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110(6):669–672PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275(21):16023–16029PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Niture SK, Jaiswal AK (2012) Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J Biol Chem 287(13):9873–9886PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21(1):103–115PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Djavaheri-Mergny M, Javelaud D, Wietzerbin J, Besançon F (2004) NF-kappaB activation prevents apoptotic oxidative stress via an increase of both thioredoxin and MnSOD levels in TNFalpha-treated Ewing sarcoma cells. FEBS Lett 578(1–2):111–115PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Jayawardena S, De Smaele E, Cong R, Beaumont C, Torti FM, Torti SV, Franzoso G (2004) Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 119(4):529–542PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Xia C, Hu J, Ketterer B, Taylor JB (1996) The organization of the human GSTP1-1 gene promoter and its response to retinoic acid and cellular redox status. Biochem J 313(Pt 1):155–161PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lavrovsky Y, Schwartzman ML, Levere RD, Kappas A, Abraham NG (1994) Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc Natl Acad Sci U S A 91(13):5987–5991PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863(12):2977–2992PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Circu ML, Aw TY (2012) Glutathione and modulation of cell apoptosis. Biochim Biophys Acta 1823(10):1767–1777PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Orrenius S, Gogvadze V, Zhivotovsky B (2015) Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun 460:72–81PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Pallepati P, Averill-Bates DA (2011) Mild thermotolerance induced at 40 degrees C protects HeLa cells against activation of death receptor-mediated apoptosis by hydrogen peroxide. Free Radic Biol Med 50:667–679PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Zhuang S, Demirs JT, Kochevar IE (2000) p38 mitogen-activated protein kinase mediates bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide. J Biol Chem 275:25939–25948PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Zhang AY, Yi F, Jin S, Xia M, Chen QZ, Gulbins E, Li PL (2007) Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 9:817–828PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Ushio-Fukai M, Nakamura Y (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett 266(1):37–52PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker TP (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 95:11715–11720PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Petry A, Djordjevic T, Weitnauer M, Kietzmann T, Hess J, Görlach A (2006) NOX2 and NOX4 mediate proliferative response in endothelial cells. Antioxid Redox Signal 8(9–10):1473–1484PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Peshavariya H, Dusting GJ, Jiang F, Halmos LR, Sobey CG, Drummond GR, Selemidis S (2009) NADPH oxidase isoform selective regulation of endothelial cell proliferation and survival. Naunyn Schmiedeberg’s Arch Pharmacol 380(2):193–204CrossRefGoogle Scholar
  49. 49.
    Komatsu D, Kato M, Nakayama J, Miyagawa S, Kamata T (2008) NADPH oxidase 1 plays a critical mediating role in oncogenic Ras-induced vascular endothelial growth factor expression. Oncogene 27(34):4724–4732PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ikeda S, Yamaoka-Tojo M, Hilenski L, Patrushev NA, Anwar GM, Quinn MT, Ushio-Fukai M (2005) IQGAP1 regulates reactive oxygen species-dependent endothelial cell migration through interacting with Nox2. Arterioscler Thromb Vasc Biol 25(11):2295–2300PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Polytarchou C, Hatziapostolou M, Papadimitriou E (2005) Hydrogen peroxide stimulates proliferation and migration of human prostate cancer cells through activation of activator protein-1 and up-regulation of the heparin affin regulatory peptide gene. J Biol Chem 280(49):40428–40435PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Payne SL, Fogelgren B, Hess AR, Seftor EA, Wiley EL, Fong SF, Csiszar K, Hendrix MJ, Kirschmann DA (2005) Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res 65(24):11429–11436PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Hawk MA, Schafer ZT (2018) Mechanisms of redox metabolism and cancer cell survival during extracellular matrix detachment. J Biol Chem 293(20):7531–7537PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol 25(15):6391–6403PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Inumaru J, Nagano O, Takahashi E, Ishimoto T, Nakamura S, Suzuki Y, Niwa S, Umezawa K, Tanihara H, Saya H (2009) Molecular mechanisms regulating dissociation of cell-cell junction of epithelial cells by oxidative stress. Genes Cells 14(6):703–716PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Davison CA, Durbin SM, Thau MR, Zellmer VR, Chapman SE, Diener J, Wathen C, Leevy WM, Schafer ZT (2013) Antioxidant enzymes mediate survival of breast cancer cells deprived of extracellular matrix. Cancer Res 73:3704–3715PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kamarajugadda S, Cai Q, Chen H, Nayak S, Zhu J, He M, Jin Y, Zhang Y, Ai L, Martin SS, Tan M, Lu J (2013) Manganese superoxide dismutase promotes anoikis resistance and tumor metastasis. Cell Death Dis 4:e504PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ, Morrison SJ (2015) Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527:186–191PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Peiris-Pagès M, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2015) Metastasis and oxidative stress: are antioxidants a metabolic driver of progression? Cell Metab 22(6):956–958PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Weng MS, Chang JH, Hung WY, Yang YC, Chien MH (2018) The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J Exp Clin Cancer Res 37:61PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Filosto S, Khan EM, Tognon E, Becker C, Ashfaq M, Ravid T, Goldkorn T (2011) EGF receptor exposed to oxidative stress acquires abnormal phosphorylation and aberrant activated conformation that impairs canonical dimerization. PLoS One 6(8):e23240PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Zhang L, Li J, Hu J, Li D, Wang X, Zhang R, Zhang H, Shi M, Chen H (2017) Cigarette smoke extract induces EGFR-TKI resistance via promoting EGFR signaling pathway and ROS generation in NSCLC cell lines. Lung Cancer 109:109–116PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Truong TH, Carroll KS (2012) Redox regulation of epidermal growth factor receptor signaling through cysteine oxidation. Biochemistry 51(50):9954–9965PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Leung EL, Fan XX, Wong MP, Jiang ZH, Liu ZQ, Yao XJ, Lu LL, Zhou YL, Yau LF, Tin VP, Liu L (2016) Targeting tyrosine kinase inhibitor-resistant non-small cell lung cancer by inducing epidermal growth factor receptor degradation via methionine 790 oxidation. Antioxid Redox Signal 24(5):263–279PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Krall EB, Wang B, Munoz DM, Ilic N, Raghavan S, Niederst MJ, Yu K, Ruddy DA, Aguirre AJ, Kim JW, Redig AJ, Gainor JF, Williams JA, Asara JM, Doench JG, Janne PA, Shaw AT, McDonald Iii RE, Engelman JA, Stegmeier F, Schlabach MR, Hahn WC (2017) KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer. elife 6:e18970PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Leone A, Roca MS, Ciardiello C, Terranova-Barberio M, Vitagliano C, Ciliberto G, Mancini R, Di Gennaro E, Bruzzese F, Budillon A (2015) Vorinostat synergizes with EGFR inhibitors in NSCLC cells by increasing ROS via up-regulation of the major mitochondrial porin VDAC1 and modulation of the c-Myc-NRF2-KEAP1 pathway. Free Radic Biol Med 89:287–299PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Li YL, Hu X, Li QY, Wang F, Zhang B, Ding K, Tan BQ, Lin NM, Zhang C (2018) Shikonin sensitizes wild-type EGFR NSCLC cells to erlotinib and gefitinib therapy. Mol Med Rep 18(4):3882–3890PubMedPubMedCentralGoogle Scholar
  68. 68.
    Nie P, Hu W, Zhang T, Yang Y, Hou B, Zou Z (2015) Synergistic induction of erlotinib-mediated apoptosis by resveratrol in human non-small-cell lung cancer cells by down-regulating survivin and up-regulating PUMA. Cell Physiol Biochem 35:2255–2271PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352(8):786–792PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Okon IS, Coughlan KA, Zhang M, Wang Q, Zou MH (2015) Gefitinib-mediated reactive oxygen species (ROS) instigates mitochondrial dysfunction and drug resistance in lung cancer cells. J Biol Chem 290(14):9101–9110PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hong SW, Park NS, Noh MH, Shim JA, Ahn BN, Kim YS, Kim D, Lee HK, Hur DY (2017) Combination treatment with erlotinib and ampelopsin overcomes erlotinib resistance in NSCLC cells via the Nox2-ROS-Bim pathway. Lung Cancer 106:115–124PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Wang YC, Wu DW, Wu TC, Wang L, Chen CY, Lee H (2018) Dioscin overcome TKI resistance in EGFR-mutated lung adenocarcinoma cells via down-regulation of tyrosine phosphatase SHP2 expression. Int J Biol Sci 14(1):47–56PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Matkar SS, Wrischnik LA, Hellmann-Blumberg U (2008) Production of hydrogen peroxide and redox cycling can explain how sanguinarine and chelerythrine induce rapid apoptosis. Arch Biochem Biophys 477(1):43–52PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Ozben T (2007) Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 96(9):2181–2196PubMedCrossRefGoogle Scholar
  75. 75.
    Wang J, Yi J (2008) Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 7(12):1875–1884PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10:175–176PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Wang JP, Hsieh CH, Liu CY, Lin KH, Wu PT, Chen KM, Fang K (2017) Reactive oxygen species-driven mitochondrial injury induces apoptosis by teroxirone in human non-small cell lung cancer cells. Oncol Lett 14(3):3503–3509PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wangpaichitr M, Wu C, Li YY, Nguyen DJM, Kandemir H, Shah S, Chen S, Feun LG, Prince JS, Kuo MT, Savaraj N (2017) Exploiting ROS and metabolic differences to kill cisplatin resistant lung cancer. Oncotarget 8(30):49275–49292PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Wang S, Hu Y, Yan Y, Cheng Z, Liu T (2018) Sotetsuflavone inhibits proliferation and induces apoptosis of A549 cells through ROS-mediated mitochondrial-dependent pathway. BMC Complement Altern Med 18(1):235PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Liu X, Chen L, Liang T, Tian XD, Liu Y, Zhang T (2017) Withaferin A induces mitochondrial-dependent apoptosis in non-small cell lung cancer cells via generation of reactive oxygen species. J BUON 22(1):244–250PubMedPubMedCentralGoogle Scholar
  81. 81.
    Kang N, Jian JF, Cao SJ, Zhang Q, Mao YW, Huang YY, Peng YF, Qiu F, Gao XM (2016) Physalin A induces G2/M phase cell cycle arrest in human non-small cell lung cancer cells: involvement of the p38 MAPK/ROS pathway. Mol Cell Biochem 415(1–2):145–155PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Rao PC, Begum S, Jahromi MA, Jahromi ZH, Sriram S, Sahai M (2016) Cytotoxicity of withasteroids: withametelin induces cell cycle arrest at G2/M phase and mitochondria-mediated apoptosis in non-small cell lung cancer A549 cells. Tumour Biol 37(9):12579–12587PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Wondrak GT (2007) NQO1-activated phenothiazinium redox cyclers for the targeted bioreductive induction of cancer cell apoptosis. Free Radic Biol Med 43:178–190PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Magda D, Miller RA (2006) Motexafin gadolinium: a novel redox active drug for cancer therapy. Semin Cancer Biol 16:466–476PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Lu LY, Ou N, Lu QB (2013) Antioxidant induces DNA damage, cell death and mutagenicity in human lung and skin normal cells. Sci Rep 3:3169PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Baskar R, Dai J, Wenlong N, Yeo R, Yeoh KW (2014) Biological response of cancer cells to radiation treatment. Front Mol Biosci 1:24PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Goldberg Z, Lehnert BE (2002) Radiation-induced effects in unirradiated cells: a review and implications in cancer. Int J Oncol 21(2):337–349PubMedPubMedCentralGoogle Scholar
  88. 88.
    Park H, Jeong YJ, Han NK, Kim JS, Lee HJ (2018) Oridonin enhances radiation-induced cell death by promoting DNA damage in non-small cell lung cancer cells. Int J Mol Sci 19(8):pii: E2378CrossRefGoogle Scholar
  89. 89.
    Lee JC, Krochak R, Blouin A, Kanterakis S, Chatterjee S, Arguiri E, Vachani A, Solomides CC, Cengel KA, Christofidou-Solomidou M (2009) Dietary flaxseed prevents radiation-induced oxidative lung damage, inflammation and fibrosis in a mouse model of thoracic radiation injury. Cancer Biol Ther 8(1):47–53PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Christofidou-Solomidou M, Tyagi S, Pietrofesa R, Dukes F, Arguiri E, Turowski J, Grieshaber PA, Solomides CC, Cengel KA (2012) Radioprotective role in lung of the flaxseed lignan complex enriched in the phenolic secoisolariciresinol diglucoside (SDG). Radiat Res 178(6):568–580PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Cho HJ, Ahn KC, Choi JY, Hwang SG, Kim WJ, Um HD, Park JK (2015) Luteolin acts as a radiosensitizer in non-small cell lung cancer cells by enhancing apoptotic cell death through activation of a p38/ROS/caspase cascade. Int J Oncol 46(3):1149–1158PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Sun M, Dong P, Chen Y, Li Y, Gao K, Hu B (2017) Coroglaucigenin enhances the radiosensitivity of human lung cancer cells through Nrf2/ROS pathway. Oncotarget 8(20):32807–32820PubMedPubMedCentralGoogle Scholar
  93. 93.
    Sun X, Wang Q, Wang Y, Du L, Xu C, Liu Q (2016) Brusatol enhances the radiosensitivity of A549 cells by promoting ROS production and enhancing DNA damage. Int J Mol Sci 17(7):997PubMedCentralCrossRefPubMedGoogle Scholar
  94. 94.
    Lee S, Lim MJ, Kim MH, Yu CH, Yun YS, Ahn J, Song JY (2012) An effective strategy for increasing the radiosensitivity of human lung cancer cells by blocking Nrf2-dependent antioxidant responses. Free Radic Biol Med 53(4):807–816PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Okon IS, Zou MH (2015) Mitochondrial ROS and cancer drug resistance: implications for therapy. Pharmacol Res 100:170–174PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Shankar M, Willcutts D, Roth JA, Ramesh R (2010) Drug resistance in lung cancer. Lung Cancer (Auckl) 1:23–36Google Scholar
  98. 98.
    Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, Herman JG, Baylin SB, Sidransky D, Gabrielson E, Brock MV, Biswal S (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 3(10):e420PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, Suzuki T, Kobayashi A, Yokota J, Sakiyama T, Shibata T, Yamamoto M, Hirohashi S (2008) Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68:1303–1309PubMedCrossRefGoogle Scholar
  100. 100.
    Zhou S, Ye W, Shao Q, Zhang M, Liang J (2013) Nrf2 is a potential therapeutic target in radioresistance in human cancer. Crit Rev Oncol Hematol 88(3):706–715PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Homma S, Ishii Y, Morishima Y, Yamadori T, Matsuno Y, Haraguchi N, Kikuchi N, Satoh H, Sakamoto T, Hizawa N, Itoh K, Yamamoto M (2009) Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin Cancer Res 15(10):3423–3432PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Kim HR, Kim S, Kim EJ, Park JH, Yang SH, Jeong ET, Park C, Youn MJ, So HS, Park R (2008) Suppression of Nrf2-driven heme oxygenase-1 enhances the chemosensitivity of lung cancer A549 cells toward cisplatin. Lung Cancer 60:47–56PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Degese MS, Mendizabal JE, Gandini NA, Gutkind JS, Molinolo A, Hewitt SM, Curino AC, Coso OA, Facchinetti MM (2012) Expression of heme oxygenase-1 in non-small cell lung cancer (NSCLC) and its correlation with clinical data. Lung Cancer 77:168–175PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Yang Y, Deng Y, Chen X, Zhang J, Chen Y, Li H, Wu Q, Yang Z, Zhang L, Liu B (2018) Inhibition of PDGFR by CP-673451 induces apoptosis and increases cisplatin cytotoxicity in NSCLC cells via inhibiting the Nrf2-mediated defense mechanism. Toxicol Lett 295:88–98PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA, Zhang DD (2011) Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci U S A 108(4):1433–1438PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Eli, Edythe L, Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489(7417):519–525CrossRefGoogle Scholar
  107. 107.
    Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 330(15):1029–1035CrossRefGoogle Scholar
  108. 108.
    van Zandwijk N, Dalesio O, Pastorino U, de Vries N, van Tinteren H (2000) EUROSCAN, a randomized trial of vitamin A and N-acetylcysteine in patients with head and neck cancer or lung cancer. For the European Organization for Research and Treatment of Cancer Head and Neck and Lung Cancer Cooperative Groups. J Natl Cancer Inst 92(12):977–986PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12(12):931–947PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Montero AJ, Diaz-Montero CM, Deutsch Y, Hurley J, Koniaris LG, Rumboldt T, Yasir S, Jorda M, Garret-Mayer E, Avisar E, Slingerland J, Silva O, Welsh C, Schuhwerk K, Seo P, Pegram MD, Glück S (2012) Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage II-IIIc breast cancer. Breast Cancer Res Treat 132:215–223PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Townsend DM, He L, Hutchens S, Garrett TE, Pazoles CJ, Tew KD (2008) NOV-002, a glutathione disulfide mimetic, as a modulator of cellular redox balance. Cancer Res 68:2870–2877PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Mehta MP, Shapiro WR, Phan SC, Gervais R, Carrie C, Chabot P, Patchell RA, Glantz MJ, Recht L, Langer C, Sur RK, Roa WH, Mahe MA, Fortin A, Nieder C, Meyers CA, Smith JA, Miller RA, Renschler MF (2009) Motexafin gadolinium combined with prompt whole brain radiotherapy prolongs time to neurologic progression in non-small-cell lung cancer patients with brain metastases: results of a phase III trial. Int J Radiat Oncol Biol Phys 73:1069–1076PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44(5):479–496PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Gupta A, Srivastava S, Prasad R, Natu SM, Mittal B, Negi MP, Srivastava AN (2010) Oxidative stress in non-small cell lung cancer patients after chemotherapy: association with treatment response. Respirology 15(2):349–356PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Hoffer LJ, Robitaille L, Zakarian R, Melnychuk D, Kavan P, Agulnik J, Cohen V, Small D, Miller WH Jr (2015) High-dose intravenous vitamin C combined with cytotoxic chemotherapy in patients with advanced cancer: a phase I-II clinical trial. PLoS One 10(4):e0120228PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO (2014) Antioxidants accelerate lung cancer progression in mice. Sci Transl Med 6:221ra15PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334:1150–1155PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Villegas L, Stidham T, Nozik-Grayck E (2014) Oxidative stress and therapeutic development in lung diseases. J Pulm Respir Med 4(4):pii: 194CrossRefGoogle Scholar
  119. 119.
    Glasauer A, Chandel NS (2014) Targeting antioxidants for cancer therapy. Biochem Pharmacol 92(1):90–101PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Watson J (2013) Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol 3(1):120144PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K, Asamura H, Yamamoto M, Hirohashi S (2008) Cancer-related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci U S A 105(36):13568–13573PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Solis LM, Behrens C, Dong W, Suraokar M, Ozburn NC, Moran CA, Corvalan AH, Biswal S, Swisher SG, Bekele BN, Minna JD, Stewart DJ, Wistuba II (2010) Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin Cancer Res 16(14):3743–3753PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J, Blackford A, Goodman SN, Bunz F, Watson WH, Gabrielson E, Feinstein E, Biswal S (2008) RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 68:7975–7984PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Shamee Bhattacharjee
    • 1
  1. 1.Department of ZoologyWest Bengal State UniversityKolkataIndia

Personalised recommendations