Oxidative Stress in Lung Diseases pp 331-352 | Cite as
Reactive Oxygen Species: Friends or Foes of Lung Cancer?
Abstract
Reactive oxygen species (ROS) are important biological radicals essential for determining different stages and phenotypes of cells from quiescence to proliferation, differentiation, self-renewal and even apoptosis. Low ROS favours quiescence and self-renewal in contrast to high ROS that dictates proliferation, differentiation or apoptosis. Such wide variety of cell fates depends upon specific signalling pathways that regulate the cellular ROS, thus contributing to tissue homeostasis. Imbalance of ROS causes several pathological conditions including cancer which is associated with higher level of ROS that supports tumour development and progression. However, to restrain from the excessive oxidative damage of ROS, cancer cells efficiently control the antioxidative pathways, thus favouring its own survival and maintenance at the same time. Furthermore, importance of ROS has been an active field of research in ‘cancer stem cells’ (CSCs), a subpopulation of cancer cells with stem cell-like properties and features. CSCs possess low ROS level that make them resistant to the existing chemotherapy or radiotherapy that ultimately leads to cancer recurrence. Though several evidences have proved the role of ROS in self-renewal and stemness of CSCs, there is a lot to explore about ROS-regulated signalling mechanisms in CSCs. An understanding of ROS regulation in CSCs can provide an idea about the application of oxidative stress as a therapeutic strategy in treatment of cancer. In this book chapter, we have raised the debate as to whether ROS acts as ‘friend or foe’ for cancer cells. Moreover, exploring the significance of ROS and redox regulation in lung cancer stem cells has been our major focus. Finally, it is suggested that in order to get an effective treatment and recurrence-free survival, sensitization of the cancer stem cells to high ROS environment is a must.
Keywords
Reactive oxygen species Cancer stem cells Lung CSCs Oxidative stress Redox regulationReferences
- 1.Giannoni E, Buricchi F, Raugei G et al (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol 25(15):6391–6403PubMedPubMedCentralCrossRefGoogle Scholar
- 2.Yee C, Yang W, Hekimi S (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 157(4):897–909PubMedPubMedCentralCrossRefGoogle Scholar
- 3.Hoeijmakers JHJ (2009) DNA damage, aging, and cancer. N Engl J Med 361(15):1475–1485PubMedCrossRefGoogle Scholar
- 4.D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8(10):813–824PubMedCrossRefGoogle Scholar
- 5.Fruehauf JP, Meyskens FL (2007) Reactive oxygen species: a breath of life or death? Clin Cancer Res 13(3):789–794PubMedCrossRefGoogle Scholar
- 6.Mohanty S, Saha S, Hossain DMS et al (2014) ROS-PIASγ cross talk channelizes ATM signaling from resistance to apoptosis during chemosensitization of resistant tumors. Cell Death Dis 5(1):e1021PubMedPubMedCentralCrossRefGoogle Scholar
- 7.Chakraborti S, Chakraborty S, Saha S et al (2017) PEG-functionalized zinc oxide nanoparticles induce apoptosis in breast cancer cells through reactive oxygen species-dependent impairment of DNA damage repair enzyme NEIL2. Free Radic Biol Med 103:35–47PubMedCrossRefGoogle Scholar
- 8.Ambrosone CB (2000) Oxidants and antioxidants in breast cancer. Antioxid Redox Signal 2(4):903–917PubMedCrossRefGoogle Scholar
- 9.Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51(3):794–798PubMedGoogle Scholar
- 10.Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401(1):1–11PubMedCrossRefGoogle Scholar
- 11.Ramsey MR, Sharpless NE (2006) ROS as a tumour suppressor? Nat Cell Biol 8(11):1213–1215PubMedCrossRefGoogle Scholar
- 12.Ozben T (2007) Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 96(9):2181–2196PubMedCrossRefGoogle Scholar
- 13.Toler SM, Noe D, Sharma A (2006) Selective enhancement of cellular oxidative stress by chloroquine: implications for the treatment of glioblastoma multiforme. Neurosurg Focus 21(6):E10PubMedCrossRefGoogle Scholar
- 14.Nguyen LV, Vanner R, Dirks P et al (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12(2):133–143PubMedCrossRefGoogle Scholar
- 15.Kobayashi CI, Suda T (2012) Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol 227(2):421–430PubMedCrossRefGoogle Scholar
- 16.Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Hermann PC, Huber SL, Herrler T et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323PubMedCrossRefGoogle Scholar
- 18.Dave B, Mittal V, Tan NM, Chang JC (2012) Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Res BCR 14(1):202PubMedCrossRefGoogle Scholar
- 19.Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26(17):2839–2845PubMedPubMedCentralCrossRefGoogle Scholar
- 20.Kurtova AV, Xiao J, Mo Q et al (2015) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517(7533):209–213PubMedCrossRefGoogle Scholar
- 21.Doherty MR, Smigiel JM, Junk DJ, Jackson MW (2016) Cancer stem cell plasticity drives therapeutic resistance. Cancers (Basel) 8(1):pii: E8CrossRefGoogle Scholar
- 22.Roesch A, Fukunaga-Kalabis M, Schmidt EC et al (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141(4):583–594PubMedPubMedCentralCrossRefGoogle Scholar
- 23.Kim HM, Haraguchi N, Ishii H et al (2012) Increased CD13 expression reduces reactive oxygen species, promoting survival of liver cancer stem cells via an epithelial-mesenchymal transition-like phenomenon. Ann Surg Oncol 19(Suppl 3):S539–S548PubMedCrossRefGoogle Scholar
- 24.Hudson TJ, Anderson W, Artez A et al (2010) International network of cancer genome projects. Nature 464(7291):993–998PubMedCrossRefGoogle Scholar
- 25.Diehn M, Cho RW, Lobo NA et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Ambudkar SV, Dey S, Hrycyna CA et al (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398PubMedCrossRefGoogle Scholar
- 27.Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22(47):7369–7375PubMedPubMedCentralCrossRefGoogle Scholar
- 28.Eastman A, Schulte N (1988) Enhanced DNA repair as a mechanism of resistance to cis-diamminedichloroplatinum(II). Biochemistry 27(13):4730–4734PubMedCrossRefGoogle Scholar
- 29.Kavallaris M, Kuo DY, Burkhart CA et al (1997) Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 100(5):1282–1293PubMedPubMedCentralCrossRefGoogle Scholar
- 30.Sethi T, Rintoul RC, Moore SM et al (1999) Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 5(6):662–668PubMedCrossRefGoogle Scholar
- 31.Park HS, Kim SR, Lee YC (2009) Impact of oxidative stress on lung diseases. Respirol Carlton Vic 14(1):27–38CrossRefGoogle Scholar
- 32.Ciencewicki J, Trivedi S, Kleeberger SR (2008) Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 122(3):456–468; quiz 469–70PubMedPubMedCentralCrossRefGoogle Scholar
- 33.Azad N, Rojanasakul Y, Vallyathan V (2008) Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev 11(1):1–15CrossRefGoogle Scholar
- 34.Zhou D, Shao L, Spitz DR (2014) Reactive oxygen species in normal and tumor stem cells. Adv Cancer Res 122:1–67PubMedPubMedCentralCrossRefGoogle Scholar
- 35.Storz P, Döppler H, Toker A (2004) Protein kinase Cdelta selectively regulates protein kinase D-dependent activation of NF-kappaB in oxidative stress signaling. Mol Cell Biol 24(7):2614–2626PubMedPubMedCentralCrossRefGoogle Scholar
- 36.Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407PubMedPubMedCentralCrossRefGoogle Scholar
- 37.Petros JA, Baumann AK, Ruiz-Pesini E et al (2005) mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A 102(3):719–724PubMedPubMedCentralCrossRefGoogle Scholar
- 38.Masri F (2010) Role of nitric oxide and its metabolites as potential markers in lung cancer. Ann Thorac Med 5(3):123–127PubMedPubMedCentralCrossRefGoogle Scholar
- 39.Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 102(13):4783–4788PubMedPubMedCentralCrossRefGoogle Scholar
- 40.Juntilla MM, Patil VD, Calamito M et al (2010) AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115(20):4030–4038PubMedPubMedCentralCrossRefGoogle Scholar
- 41.Kinder M, Wei C, Shelat SG et al (2010) Hematopoietic stem cell function requires 12/15-lipoxygenase-dependent fatty acid metabolism. Blood 115(24):5012–5022PubMedPubMedCentralCrossRefGoogle Scholar
- 42.Lewandowski JP, Sheehan KB, Bennett PE, Boswell RE (2010) Mago Nashi, Tsunagi/Y14 and Ranshi form a complex that influences oocyte differentiation in Drosophila melanogaster. Dev Biol 339(2):307–319PubMedPubMedCentralCrossRefGoogle Scholar
- 43.Owusu-Ansah E, Banerjee U (2009) Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461(7263):537–541PubMedPubMedCentralCrossRefGoogle Scholar
- 44.Sauer H, Wartenberg M (2005) Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid Redox Signal 7(11–12):1423–1434PubMedCrossRefGoogle Scholar
- 45.Chen C, Liu Y, Liu R et al (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205(10):2397–2408PubMedPubMedCentralCrossRefGoogle Scholar
- 46.Miyamoto K, Araki KY, Naka K et al (2007) Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1(1):101–112PubMedCrossRefGoogle Scholar
- 47.Tothova Z, Kollipara R, Huntly BJ et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128(2):325–339PubMedCrossRefGoogle Scholar
- 48.Shao L, Wu L, Zhou D (2012) Sensitization of tumor cells to cancer therapy by molecularly targeted inhibition of the inhibitor of nuclear factor κB kinase. Transl Cancer Res 1(2):100–108PubMedPubMedCentralGoogle Scholar
- 49.Shao L, Sun Y, Zhang Z et al (2010) Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation. Blood 115(23):4707–4714PubMedPubMedCentralCrossRefGoogle Scholar
- 50.Yu H, Shen H, Yuan Y et al (2010) Deletion of Puma protects hematopoietic stem cells and confers long-term survival in response to high-dose gamma-irradiation. Blood 115(17):3472–3480PubMedPubMedCentralCrossRefGoogle Scholar
- 51.Ji A-R, Ku S-Y, Cho MS et al (2010) Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage. Exp Mol Med 42(3):175–186PubMedPubMedCentralCrossRefGoogle Scholar
- 52.Schmelter M, Ateghang B, Helmig S et al (2006) Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J 20(8):1182–1184PubMedCrossRefGoogle Scholar
- 53.Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313CrossRefGoogle Scholar
- 54.van der Vliet A (2008) NADPH oxidases in lung biology and pathology: host defense enzymes, and more. Free Radic Biol Med 44(6):938–955CrossRefGoogle Scholar
- 55.Zhang C, Lan T, Hou J et al (2014) NOX4 promotes non-small cell lung cancer cell proliferation and metastasis through positive feedback regulation of PI3K/Akt signaling. Oncotarget 5(12):4392–4405PubMedPubMedCentralCrossRefGoogle Scholar
- 56.Boudreau HE, Casterline BW, Burke DJ, Leto TL (2014) Wild-type and mutant p53 differentially regulate NADPH oxidase 4 in TGF-β-mediated migration of human lung and breast epithelial cells. Br J Cancer 110(10):2569–2582PubMedPubMedCentralCrossRefGoogle Scholar
- 57.Fischer H (2009) Mechanisms and function of DUOX in epithelia of the lung. Antioxid Redox Signal 11(10):2453–2465PubMedPubMedCentralCrossRefGoogle Scholar
- 58.Luxen S, Belinsky SA, Knaus UG (2008) Silencing of DUOX NADPH oxidases by promoter hypermethylation in lung cancer. Cancer Res 68(4):1037–1045PubMedCrossRefGoogle Scholar
- 59.Colavitti R, Pani G, Bedogni B et al (2002) Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. J Biol Chem 277(5):3101–3108PubMedCrossRefGoogle Scholar
- 60.Finkel T (2000) Redox-dependent signal transduction. FEBS Lett 476(1–2):52–54PubMedCrossRefGoogle Scholar
- 61.Chiarugi P, Fiaschi T (2007) Redox signalling in anchorage-dependent cell growth. Cell Signal 19(4):672–682PubMedCrossRefGoogle Scholar
- 62.Rhee SG, Bae YS, Lee SR, Kwon J (2000) Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE Signal Transduct Knowl Environ 2000(53):pe1Google Scholar
- 63.Irani K, Xia Y, Zweier JL et al (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275(5306):1649–1652PubMedCrossRefGoogle Scholar
- 64.Reddy KB, Glaros S (2007) Inhibition of the MAP kinase activity suppresses estrogen-induced breast tumor growth both in vitro and in vivo. Int J Oncol 30(4):971–975PubMedGoogle Scholar
- 65.Lander HM, Hajjar DP, Hempstead BL et al (1997) A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem 272(7):4323–4326PubMedCrossRefGoogle Scholar
- 66.Chan DW, Liu VWS, Tsao GSW et al (2008) Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 29(9):1742–1750PubMedCrossRefGoogle Scholar
- 67.McCubrey JA, Steelman LS, Chappell WH et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284PubMedCrossRefGoogle Scholar
- 68.Steelman LS, Abrams SL, Whelan J et al (2008) Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 22(4):686–707PubMedCrossRefGoogle Scholar
- 69.Lee WC, Choi CH, Cha SH, Oh HL, Kim YK (2005) Role of ERK in hydrogen peroxide-induced cell death of human glioma cells. Neurochem Res 30(2):263–270PubMedCrossRefGoogle Scholar
- 70.Rygiel TP, Mertens AE, Strumane K et al (2008) The Rac activator Tiam1 prevents keratinocyte apoptosis by controlling ROS-mediated ERK phosphorylation. J Cell Sci 121(Pt 8):1183–1192PubMedCrossRefGoogle Scholar
- 71.Ostrakhovitch EA, Cherian MG (2005) Inhibition of extracellular signal regulated kinase (ERK) leads to apoptosis inducing factor (AIF) mediated apoptosis in epithelial breast cancer cells: the lack of effect of ERK in p53 mediated copper induced apoptosis. J Cell Biochem 95(6):1120–1134PubMedCrossRefGoogle Scholar
- 72.Zhou J, Chen Y, Lang J-Y (2008) Salvicine inactivates beta 1 integrin and inhibits adhesion of MDA-MB-435 cells to fibronectin via reactive oxygen species signaling. Mol Cancer Res MCR 6(2):194–204PubMedCrossRefGoogle Scholar
- 73.Lewis A, Du J, Liu J, Ritchie JM, Oberley LW, Cullen JJ (2005) Metastatic progression of pancreatic cancer: changes in antioxidant enzymes and cell growth. Clin Exp Metastasis 22(7):523–532PubMedCrossRefGoogle Scholar
- 74.Mazzio EA, Soliman KFA (2004) Glioma cell antioxidant capacity relative to reactive oxygen species produced by dopamine. J Appl Toxicol JAT 24(2):99–106PubMedCrossRefGoogle Scholar
- 75.Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868PubMedCrossRefGoogle Scholar
- 76.Pastorino JG, Tafani M, Farber JL (1999) Tumor necrosis factor induces phosphorylation and translocation of BAD through a phosphatidylinositide-3-OH kinase-dependent pathway. J Biol Chem 274(27):19411–19416PubMedCrossRefGoogle Scholar
- 77.Burdick AD, Davis JW, Liu KJ et al (2003) Benzo(a)pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells. Cancer Res 63(22):7825–7833PubMedGoogle Scholar
- 78.Park S-A, Na H-K, Kim E-H et al (2009) 4-hydroxyestradiol induces anchorage-independent growth of human mammary epithelial cells via activation of IkappaB kinase: potential role of reactive oxygen species. Cancer Res 69(6):2416–2424PubMedCrossRefGoogle Scholar
- 79.Liu L-Z, Hu X-W, Xia C et al (2006) Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med 41(10):1521–1533PubMedCrossRefGoogle Scholar
- 80.Li N, Karin M (1999) Is NF-kappaB the sensor of oxidative stress? FASEB J 13(10):1137–1143PubMedCrossRefGoogle Scholar
- 81.Schreck R, Albermann K, Baeuerle PA (1992) Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun 17(4):221–237PubMedCrossRefGoogle Scholar
- 82.Wang Y, Huang X, Cang H et al (2007) The endogenous reactive oxygen species promote NF-kappaB activation by targeting on activation of NF-kappaB-inducing kinase in oral squamous carcinoma cells. Free Radic Res 41(9):963–971PubMedCrossRefGoogle Scholar
- 83.Storz P, Toker A (2003) Protein kinase D mediates a stress-induced NF-kappaB activation and survival pathway. EMBO J 22(1):109–120PubMedPubMedCentralCrossRefGoogle Scholar
- 84.Cowell CF, Döppler H, Yan IK et al (2009) Mitochondrial diacylglycerol initiates protein-kinase D1-mediated ROS signaling. J Cell Sci 122(Pt 7):919–928PubMedPubMedCentralCrossRefGoogle Scholar
- 85.Döppler H, Storz P (2007) A novel tyrosine phosphorylation site in protein kinase D contributes to oxidative stress-mediated activation. J Biol Chem 282(44):31873–31881PubMedCrossRefGoogle Scholar
- 86.Storz P, Döppler H, Toker A (2004) Activation loop phosphorylation controls protein kinase D-dependent activation of nuclear factor kappaB. Mol Pharmacol 66(4):870–879PubMedCrossRefGoogle Scholar
- 87.Antonicelli F, Parmentier M, Drost EM et al (2002) Nacystelyn inhibits oxidant-mediated interleukin-8 expression and NF-kappaB nuclear binding in alveolar epithelial cells. Free Radic Biol Med 32(6):492–502PubMedCrossRefGoogle Scholar
- 88.Goudar RK, Vlahovic G (2008) Hypoxia, angiogenesis, and lung cancer. Curr Oncol Rep 10(4):277–282PubMedCrossRefGoogle Scholar
- 89.Cho KH, Choi MJ, Jeong KJ et al (2014) A ROS/STAT3/HIF-1α signaling cascade mediates EGF-induced TWIST1 expression and prostate cancer cell invasion. The Prostate 74(5):528–536PubMedCrossRefGoogle Scholar
- 90.Zhao T, Zhu Y, Morinibu A et al (2014) HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep 4:3793PubMedPubMedCentralCrossRefGoogle Scholar
- 91.Sarsour EH, Venkataraman S, Kalen AL et al (2008) Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth. Aging Cell 7(3):405–417PubMedPubMedCentralCrossRefGoogle Scholar
- 92.Felty Q, Singh KP, Roy D (2005) Estrogen-induced G1/S transition of G0-arrested estrogen-dependent breast cancer cells is regulated by mitochondrial oxidant signaling. Oncogene 24(31):4883–4893PubMedCrossRefGoogle Scholar
- 93.Menon SG, Coleman MC, Walsh SA et al (2005) Differential susceptibility of nonmalignant human breast epithelial cells and breast cancer cells to thiol antioxidant-induced G(1)-delay. Antioxid Redox Signal 7(5–6):711–718PubMedCrossRefGoogle Scholar
- 94.Ruiz-Ramos R, Lopez-Carrillo L, Rios-Perez AD et al (2009) Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-kappaB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res 674(1–2):109–115PubMedCrossRefGoogle Scholar
- 95.Cullen JJ, Weydert C, Hinkhouse MM et al (2003) The role of manganese superoxide dismutase in the growth of pancreatic adenocarcinoma. Cancer Res 63(6):1297–1303PubMedGoogle Scholar
- 96.Browne SE, Roberts LJ, Dennery PA et al (2004) Treatment with a catalytic antioxidant corrects the neurobehavioral defect in ataxia-telangiectasia mice. Free Radic Biol Med 36(7):938–942PubMedCrossRefGoogle Scholar
- 97.Reichenbach J, Schubert R, Schindler D et al (2002) Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid Redox Signal 4(3):465–469PubMedCrossRefGoogle Scholar
- 98.Pelicano H, Lu W, Zhou Y et al (2009) Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res 69(6):2375–2383PubMedPubMedCentralCrossRefGoogle Scholar
- 99.Chiarugi P (2008) From anchorage dependent proliferation to survival: lessons from redox signalling. IUBMB Life 60(5):301–307PubMedCrossRefGoogle Scholar
- 100.Taddei ML, Parri M, Mello T et al (2007) Integrin-mediated cell adhesion and spreading engage different sources of reactive oxygen species. Antioxid Redox Signal 9(4):469–481PubMedCrossRefGoogle Scholar
- 101.Broom OJ, Massoumi R, Sjölander A (2006) Alpha2beta1 integrin signalling enhances cyclooxygenase-2 expression in intestinal epithelial cells. J Cell Physiol 209(3):950–958PubMedCrossRefGoogle Scholar
- 102.Svineng G, Ravuri C, Rikardsen O et al (2008) The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function. Connect Tissue Res 49(3):197–202PubMedCrossRefGoogle Scholar
- 103.Werner E, Werb Z (2002) Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J Cell Biol 158(2):357–368PubMedPubMedCentralCrossRefGoogle Scholar
- 104.Giannoni E, Fiaschi T, Ramponi G, Chiarugi P (2009) Redox regulation of anoikis resistance of metastatic prostate cancer cells: key role for Src and EGFR-mediated pro-survival signals. Oncogene 28(20):2074–2086PubMedCrossRefGoogle Scholar
- 105.Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Aspects Med 25(1–2):17–26PubMedCrossRefGoogle Scholar
- 106.Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis Int J Program Cell Death 5(5):415–418CrossRefGoogle Scholar
- 107.Chung YM, Bae YS, Lee SY (2003) Molecular ordering of ROS production, mitochondrial changes, and caspase activation during sodium salicylate-induced apoptosis. Free Radic Biol Med 34(4):434–442PubMedCrossRefGoogle Scholar
- 108.Storz P (2007) Mitochondrial ROS--radical detoxification, mediated by protein kinase D. Trends Cell Biol 17(1):13–18PubMedCrossRefGoogle Scholar
- 109.Saitoh M, Nishitoh H, Fujii M et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17(9):2596–2606PubMedPubMedCentralCrossRefGoogle Scholar
- 110.Takeda K, Matsuzawa A, Nishitoh H, Ichijo H (2003) Roles of MAPKKK ASK1 in stress-induced cell death. Cell Struct Funct 28(1):23–29PubMedCrossRefGoogle Scholar
- 111.You H, Yamamoto K, Mak TW (2006) Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a. Proc Natl Acad Sci U S A 103(24):9051–9056PubMedPubMedCentralCrossRefGoogle Scholar
- 112.Schulze-Osthoff K, Beyaert R, Vandevoorde V et al (1993) Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J 12(8):3095–3104PubMedPubMedCentralCrossRefGoogle Scholar
- 113.Xu YC, Wu RF, Gu Y et al (2002) Involvement of TRAF4 in oxidative activation of c-Jun N-terminal kinase. J Biol Chem 277(31):28051–28057PubMedCrossRefGoogle Scholar
- 114.Leon G, MacDonagh L, Finn SP et al (2016) Cancer stem cells in drug resistant lung cancer: targeting cell surface markers and signaling pathways. Pharmacol Ther 158:71–90PubMedCrossRefGoogle Scholar
- 115.MacDonagh L, Gray SG, Breen E et al (2016) Lung cancer stem cells: the root of resistance. Cancer Lett 372(2):147–156PubMedCrossRefGoogle Scholar
- 116.Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67(10):4827–4833PubMedCrossRefGoogle Scholar
- 117.Jiang F, Qiu Q, Khanna A et al (2009) Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res MCR 7(3):330–338PubMedCrossRefGoogle Scholar
- 118.Eramo A, Lotti F, Sette G et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15(3):504–514PubMedPubMedCentralCrossRefGoogle Scholar
- 119.Yan X, Luo H, Zhou X et al (2013) Identification of CD90 as a marker for lung cancer stem cells in A549 and H446 cell lines. Oncol Rep 30(6):2733–2740PubMedCrossRefGoogle Scholar
- 120.Tian C, Huang D, Yu Y et al (2017) ABCG1 as a potential oncogene in lung cancer. Exp Ther Med 13(6):3189–3194PubMedPubMedCentralCrossRefGoogle Scholar
- 121.Dai Y, Liu S, Zhang W-Q et al (2017) YAP1 regulates ABCG2 and cancer cell side population in human lung cancer cells. Oncotarget 8(3):4096–4109PubMedCrossRefGoogle Scholar
- 122.Nie S, Huang Y, Shi M et al (2018) Protective role of ABCG2 against oxidative stress in colorectal cancer and its potential underlying mechanism. Oncol Rep 40(4):2137–2146PubMedGoogle Scholar
- 123.Yu W-K, Wang Z, Fong C-C et al (2017) Chemoresistant lung cancer stem cells display high DNA repair capability to remove cisplatin-induced DNA damage. Br J Pharmacol 174(4):302–313PubMedPubMedCentralCrossRefGoogle Scholar
- 124.Zeuner A, Francescangeli F, Contavalli P et al (2014) Elimination of quiescent/slow-proliferating cancer stem cells by Bcl-XL inhibition in non-small cell lung cancer. Cell Death Differ 21(12):1877–1888PubMedPubMedCentralCrossRefGoogle Scholar
- 125.Singh S, Bora-Singhal N, Kroeger J et al (2013) βArrestin-1 and Mcl-1 modulate self-renewal growth of cancer stem-like side-population cells in non-small cell lung cancer. PLoS ONE 8(2):e55982PubMedPubMedCentralCrossRefGoogle Scholar
- 126.Chong SJF, Low ICC, Pervaiz S (2014) Mitochondrial ROS and involvement of Bcl-2 as a mitochondrial ROS regulator. Mitochondrion 19(Pt A):39–48PubMedCrossRefGoogle Scholar
- 127.Wang K, Zhang T, Dong Q et al (2013) Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death Dis 4:e537PubMedPubMedCentralCrossRefGoogle Scholar
- 128.Dong C, Yuan T, Wu Y et al (2013) Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23(3):316–331PubMedPubMedCentralCrossRefGoogle Scholar
- 129.Fang L, Zhu Q, Neuenschwander M et al (2016) A small-molecule antagonist of the β-catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis. Cancer Res 76(4):891–901PubMedCrossRefGoogle Scholar
- 130.Schieber MS, Chandel NS (2013) ROS links glucose metabolism to breast cancer stem cell and EMT phenotype. Cancer Cell 23(3):265–267PubMedCrossRefGoogle Scholar
- 131.Mut-Salud N, Álvarez PJ, Garrido JM, Carrasco E, Aránega A, Rodríguez-Serrano F (2016) Antioxidant intake and antitumor therapy: toward nutritional recommendations for optimal results. Oxid Med Cell Longev 2016:6719534PubMedCrossRefGoogle Scholar
- 132.Ogasawara MA, Zhang H (2009) Redox regulation and its emerging roles in stem cells and stem-like cancer cells. Antioxid Redox Signal 11(5):1107–1122PubMedCrossRefGoogle Scholar
- 133.Dey-Guha I, Wolfer A, Yeh AC, Albeck J, Darp R, Leon E et al (2011) Asymmetric cancer cell division regulated by AKT. Proc Natl Acad Sci U S A 108(31):12845–12850PubMedPubMedCentralCrossRefGoogle Scholar
- 134.Lan D, Wang L (2018) He R, et al Exogenous glutathione contributes to cisplatin resistance in lung cancer A549 cells. Am J Transl Res 10(5):1295–1309PubMedPubMedCentralGoogle Scholar
- 135.Nagano O, Okazaki S, Saya H (2013) Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene 32(44):5191–5198PubMedCrossRefGoogle Scholar
- 136.Kwon T, Bak Y, Park Y-H et al (2016) Peroxiredoxin II is essential for maintaining stemness by redox regulation in liver cancer cells. Stem Cells Dayt Ohio 34(5):1188–1197CrossRefGoogle Scholar
- 137.Chandimali N, Jeong DK, Kwon T (2018) Peroxiredoxin II regulates cancer stem cells and stemness-associated properties of cancers. Cancers 10(9):305PubMedCentralCrossRefPubMedGoogle Scholar
- 138.Soini Y, Kinnula VL (2012) High association of peroxiredoxins with lung cancer. Lung Cancer Amst Neth 78(2):167CrossRefGoogle Scholar
- 139.Chandimali N, Huynh DL, Zhang JJ, Lee JC, Yu D-Y, Jeong DK et al (2018) MicroRNA-122 negatively associates with peroxiredoxin-II expression in human gefitinib-resistant lung cancer stem cells. Cancer Gene Ther 19Google Scholar
- 140.Lee KW, Lee DJ, Lee JY, Kang DH, Kwon J, Kang SW (2011) Peroxiredoxin II restrains DNA damage-induced death in cancer cells by positively regulating JNK-dependent DNA repair. J Biol Chem 286(10):8394–8404PubMedCrossRefGoogle Scholar
- 141.Soini Y, Kahlos K (2001) Näpänkangas U, et al Widespread expression of thioredoxin and thioredoxin reductase in non-small cell lung carcinoma. Clin Cancer Res 7(6):1750–1757PubMedGoogle Scholar
- 142.Cho H-Y, Reddy SP, Kleeberger SR (2006) Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal 8(1–2):76–87PubMedCrossRefGoogle Scholar
- 143.Ohta T, Iijima K, Miyamoto M et al (2008) Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68(5):1303–1309PubMedCrossRefGoogle Scholar
- 144.Ryoo I, Lee S, Kwak M-K (2016) Redox modulating NRF2: a potential mediator of cancer stem cell resistance. Oxid Med Cell Longev 2016:2428153PubMedCrossRefGoogle Scholar
- 145.Morgan MJ, Liu Z (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21(1):103–115PubMedPubMedCentralCrossRefGoogle Scholar
- 146.Park HJ, Carr JR, Wang Z et al (2009) FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J 28(19):2908–2918PubMedPubMedCentralCrossRefGoogle Scholar
- 147.Yang DK, Son CH, Lee SK et al (2009) Forkhead box M1 expression in pulmonary squamous cell carcinoma: correlation with clinicopathologic features and its prognostic significance. Hum Pathol 40(4):464–470PubMedCrossRefGoogle Scholar
- 148.Kwok CTD, Leung MH, Qin J et al (2016) The Forkhead box transcription factor FOXM1 is required for the maintenance of cell proliferation and protection against oxidative stress in human embryonic stem cells. Stem Cell Res 16(3):651–661PubMedCrossRefGoogle Scholar
- 149.Fu Z, Cao X, Yang Y et al (2018) Upregulation of FoxM1 by MnSOD overexpression contributes to cancer stem-like cell characteristics in the lung cancer H460 cell line. Technol Cancer Res Treat 17:1533033818789635PubMedPubMedCentralCrossRefGoogle Scholar
- 150.Jeannot V, Mazzaferro S, Lavaud J et al (2016) Targeting CD44 receptor-positive lung tumors using polysaccharide-based nanocarriers: Influence of nanoparticle size and administration route. Nanomedicine Nanotechnol Biol Med 12(4):921–932CrossRefGoogle Scholar
- 151.Benhar M, Shytaj IL, Stamler JS, Savarino A (2016) Dual targeting of the thioredoxin and glutathione systems in cancer and HIV. J Clin Invest 126(5):1630–1639PubMedPubMedCentralCrossRefGoogle Scholar
- 152.Lagadinou ED, Sach A, Callahan K et al (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12(3):329–341PubMedPubMedCentralCrossRefGoogle Scholar
- 153.Ren D, Villeneuve NF, Jiang T et al (2011) Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci U S A 108(4):1433–1438PubMedPubMedCentralCrossRefGoogle Scholar
- 154.Sun X, Wang Q, Wang Y, Du L, Xu C, Liu Q (2016) Brusatol enhances the radiosensitivity of A549 cells by promoting ROS production and enhancing DNA damage. Int J Mol Sci 17(7):997PubMedCentralCrossRefPubMedGoogle Scholar
- 155.Zhang H, Mi J-Q, Fang H et al (2013) Preferential eradication of acute myelogenous leukemia stem cells by fenretinide. Proc Natl Acad Sci U S A 110(14):5606–5611PubMedPubMedCentralCrossRefGoogle Scholar