Advertisement

Regenerative Therapy

  • Vibhakar Vachhrajani
  • Payal Khakhkhar
Chapter

Abstract

  1. (a)

    Stem cell therapy:

    Stem cell therapy is a future of many diseases. Adipose tissue stem cells are extensively tried for wound management. Stem cell therapy is useful in degenerative bone disease, cardiac muscular degeneration, retinal degeneration, kidney disorder and some dermatological conditions in addition to wound management. Autologous stem cell therapy is likely to be accepted more easily by medical and ethical committees.

     
  2. (b)

    Cellular therapy:

    Fibroblasts, keratinocytes, adipose derived stromal vascular fraction cells, bone marrow stem cells and platelets are used as cellular therapy. When there is more skin loss, cellular therapy is a boon. Cells are derived either from a piece of skin by processing and culture or from adipose tissue in the form of stromal vascular fraction cells. The cells when applied on the wound survive on wound and start multiplying. Autologous and allogenic cells can be used for cellular therapy.

     
  3. (c)

    Skin and living skin equivalents:

    Skin is the best dressing material. Cadaveric, allogenic, autologous and xenografts are available to cover large wounds. Acceptance of skin graft is better than bilayered skin substitutes. Skin substitutes are better to cover open bones and joints. Epidermal and Bilayered synthetic skin substitutes are very costly. Placental membrane is also available in plenty as a dressing material.

     
  4. (d)

    Gene therapy:

    For wound management, it is gene transfer treatment and not gene therapy. There are physical, chemical and viral ways to introduce gene. Growth factor genes are transferred to wound cells. This in turn produces growth factors and helps the wound to heal faster. This therapy works better than local application of growth factors. It is a costly therapy and available in only a few centres. RNA,DNA viruses and lentiviruses are used as vectors for gene therapy.

     

References

  1. 1.
    Weissman IL. Translating stem and progenitor cell biology to the clinic: barrier and opportunities. Science. 2000;287:1442–6.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Quan TE, Cowper S, Wu SP, Bocknstedt LK, Bucala R. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol. 2004;36:598–606.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Abe R, Donnelly SC, Peng T, Bucala R, Metz CN. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 2001;166:7556–62.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bucala R, Spigel LA Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1:71–81.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefGoogle Scholar
  6. 6.
    Opalenik SR, Davidson JM. Fibroblast differentiation of bone marrow derived cells during wound repair. FASEB J. 2005;19:1561–3.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Strem BM, Hicok KC, Zhu M, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54:132–41.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell based therapies. Tissue Eng. 2001;7:211–22.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Cao Y, Sun Z, Liao L, et al. Human adipose tissue derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun. 2005;332:370–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109:1292–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Nelson TJ, Behfar A, Yamada S, et al. Stem cell platforms for regenerative medicine. Clin Transl Sci. 2009;2:222–7.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Borue X, et al. Bone marrow derived cells contribute to epithelial engraftment during wound healing. Am J Pathol. 2004;165:1767–72.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Seo YK, Song KY, Kim YJ, Park JK. Wound healing effect of acellular artificial dermis containing extracellular matrix secreted by human skin fibroblasts. Artif Organs. 2007;31:509–20.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Erdag G, Sheridan RL. Fibroblasts improve performance of cultured composite skin substitutes on athymic mice. Burns. 2004;30:322–8.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Morimoto N, Saso Y, Tomihata K, Taira T, Takahashi Y, Ohta M, Suzuki S. Viability and function of autologous and allogeneic fibroblasts seeded in dermal substitutes after implantation. J Surg Res. 2005;125:56–67.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Yates CC, Whaley D, Wells A. Transplanted fibroblasts prevents dysfunctional repair in a murine CXCR3-deficient scarring model. Cell Transplant. 2012;21:919–31.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    El-Ghalbzouri A, Gibbs S, Lamme E, Van Blitterswijk CA, Ponec M. Effect of fibroblasts on epidermal regeneration. Br J Dermatol. 2002;147:230–43.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kang BS, Na YC, Jin YW. Comparison of the wound healing effect of cellulose and gelatin: an in vivo study. Arch Plast Surg. 2012;39:317–21.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kim H, Son D, Choi TH, Jung S, Kwon S, Kim J, Han K. Evaluation of an amniotic membrane-collagen dermal substitute in the management of full-thickness skin defects in a pig. Arch Plast Surg. 2013;40:11–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Gallego L, Junquera L, Villarreal P, Peña I, Meana A. Use of cultured human epithelium for coverage: a defect of radial forearm free flap donor site. Med Oral Patol Oral Cir Bucal. 2010;15:e58–60.PubMedGoogle Scholar
  21. 21.
    Yanaga H, Udoh Y, Yamauchi T, Yamamoto M, Kiyokawa K, Inoue Y, Tai Y. Cryopreserved cultured epidermal allografts achieved early closure of wounds and reduced scar formation in deep partial-thickness burn wounds (DDB) and split-thickness skin donor sites of pediatric patients. Burns. 2001;27:689–98.PubMedCrossRefGoogle Scholar
  22. 22.
    Winters CL, Bridigo SA, Liden BA, et al. A multicenter stydy involving the use of a human aceullar dermal regenerative tissue matrix for the treatment of diabetic lower extremity wounds. Adv Skin Wound Care. 2008;21:375–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Greenleaf G, Copper ML, Hansbrough JF. Microbial Contamination in allografted wound beds in patients with burns. J Burn Care Rehabil. 1991;12:442.PubMedCrossRefGoogle Scholar
  24. 24.
    Kealey GP. Disease transmission by means of allograft. J Burn Care Rehabil. 1997;18:10–1.CrossRefGoogle Scholar
  25. 25.
    Yannas I. Studies on the biological activity of the dermal regeneration template. Wound Repair Regen. 1998;6:518–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Falanga V. How to use Apligraf to treat Venous ulcers. Skin Aging. 1999;7:30–6.Google Scholar
  27. 27.
    Sabolinski ML, Alvarez OM, Mulder G, Parentau NL. Cultured skin as a smart material for healing wounds: experience in venous ulcers. Biomaterials. 1996;17:311–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Veves A, Falanga V, Armstrong DG, et al. Graftskin a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care. 2001;24(2):290–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Williams A, Marston MD. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcer. Diabetes Care. 2003;26:1701–5.CrossRefGoogle Scholar
  30. 30.
    Gentzkow GD, Iwasaki SD, Hershon KS, Mengel M, Prendergast JJ, Ricotta JJ, Steed DP, Lipkin S. Diabetes Care. 1996;19(4):350–4.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ozgonul C, Diniz Grisolia AB, Demirci H. Ophthal Plast Reconstr Surg. 2018;34(1):64–7.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Iorio ML, Goldstein J, Adams M, Devid H, et al. Functional limb salvage in the diabetic patient. J Plast Reconstr Surg. 2011;127(1):260–7.CrossRefGoogle Scholar
  33. 33.
    Demling RH, Niezgoda JA, Haraway GD, et al. Small intestinal submucosa wound matrix and full thickness venous ulcers: preliminary results. Wounds. 2004;16:18–22.Google Scholar
  34. 34.
    Niezoda JA, Van Gils CC, Frykberg RG, et al. Randomized clinical trial comparing OASIS Wound Matrix to TRegranex Gel for diabetic ulcers. Adv Skin Wound Care. 2005;18(5 Pt 1):258–66.CrossRefGoogle Scholar
  35. 35.
    Niezgoda JA, Van Gils CC, Frykberg RG, et al. Randomized clinical trial comparing OASIS Wound Matrix to Regranex Gel for diabetic ulcers. Adv Skin Wound Care. 2005;18(5 Pt 1):258–66.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Veves A, Sheehan P, Pham HT. A randomized, Controlled trial of Promogran (a collagen/oxidized regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch Surg. 2002;137:822–7.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kakagia DD, Kazakos KJ, Xarchas KC, et al. Synergistic action of protease modulating matrix and autologous growth factor in healing of diabetic foot ulcers. A prospective randomized trial. J Diabet Complications. 2007;21:387–91.CrossRefGoogle Scholar
  38. 38.
    Sharma SC, Bagree MM, Bhat AL, et al. Amniotic membrane is an effective burn dressing material. Jpn J Surg. 1985;15:140–3.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Werber B, et al. A prospective study of 20 foot and ankle wounds treated with cryopreserved amniotic membrane and fluid allograft. J Foot Ankle Surg. 2013;52(5):615–21.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Zelen, et al. A prospective, randomized comparative study of weekly versus biweekly application of dehydrated human amnion/chorion membrane allograft in the management of diabetic foot ulcer. Int Wound J. 2014;1(2):122–8.CrossRefGoogle Scholar
  41. 41.
    Chua LSM, et al. An Open label prospective plot study to evaluate the efficacy of cryopreserved amniotic tissue grafts for chronic non healing ulcers. Wounds. 2014;26(5):E30–8.Google Scholar
  42. 42.
    Isner JM, Baumgartner I, Rauh G, et al. Treatment of thromboangitis obliterans (Buerger’s disease) by intramuscular gene transfer of vascular endothelial growth factor: Preliminary clinical results. J Vasc Surg. 1998;28:964–73.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Petrie NC, Yao F, Eriksson E. Gene therapy in wound healing. Surg Clin North Am. 2003;83:597–616.. viiPubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Eming SA, Krieg T, Davidson JM. Gene transfer in tissue repair: status, challenges and future direction. Expert Opin Biol Ther. 2004;4:1373–86.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Davidson JM, Krieg T, Eming SA. Particle-mediated gene therapy of wounds. Wound Repair Regen. 2000;8:452–9.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Crystal R, McElvaney N, Rosenfeld M, et al. Administation of an adenovirus containing the human CFTR cDNA to the respiratory tract of indivisuals with cystic fibrosis. Nat Genet. 1994;8:42–51.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Crombleholme TM. Adenoviral- mediated gene transfer in wound healing. Wound Repair Regen. 2000;8:460–72.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Lu Y. Recombinant adeno associated virus as delivery vector for gene therapy- a review. Stem Cells Dev. 2004;13:133–45.PubMedCrossRefGoogle Scholar
  49. 49.
    Flotte TR. Gene therapy progress and prospects : Recombinant Adeno associated virus(rAAV) vectors. Gene Ther. 2004;11:805–10.PubMedCrossRefGoogle Scholar
  50. 50.
    CAi D, Mukhopadhyay T, Liu Y, Fujiawra T, Roth J. Stable expression of the wild type P gene in human lung cancer cells after retrovirus-mediated gene transfer. Hum Gene Ther. 1993;4:617–24.PubMedCrossRefGoogle Scholar
  51. 51.
    Lindblad JW. Gene therapy in wound healing 2000: a promising future. Wound Repair Regen. 2000;8:411–2.CrossRefGoogle Scholar
  52. 52.
    Margolis DJ, et al. Clinical protocol. Phase I trial to evaluate the safety of H5. 020CMV.PDGF- b and limb compression bandage for the treatment of venous leg ulcer: trial A. Hum Gene Ther. 2004;15:1003–19.PubMedCrossRefGoogle Scholar
  53. 53.
    Ono I, Yamashita T, Hida T, Jin HY, Ito Y, Hamodo H, Akasaka Y, Ishii T, Jimbow K. Local administration of hepatocyte growth factor gene enhances the regeneration of dermis in acute incisional wounds. J Surg Res. 2004;120(1):47–55.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Galeano M, Deodato B, Attavilla D, Cucinotta D, Arsic N, Marini H, Torre V, Giacca M, Squadrito F. Adeno-associated viral vector mediated human vascular endothelial growth factor gene transfer stimulate angiogenesis and wound healing in the genetically diabetic mouse. Diabetologia. 2003;46(4):555–66.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Vibhakar Vachhrajani
    • 1
  • Payal Khakhkhar
    • 1
  1. 1.Diabetic foot and wound managementVijay Vachhrajani Memorial Hospital RajkotIndia

Personalised recommendations