Geochronological Entropy, and Its Relevance to Age Measurements

  • Paul R. EizenhöferEmail author
Part of the Springer Theses book series (Springer Theses)


The maturity of geochronological techniques in recent years, e.g. (semi-)automated fission-track analysis [1] and laser-ablation systems [2], made large data sets more effectively available in shorter analyses times at an acceptable cost of precision and accuracy. Complex geological systems harbouring multiple age populations, typical in sedimentary provenance studies, instinctively require statistically robust large numbers of single geochronological analyses per sample in order to approximate the ideal age distribution.


  1. 1.
    Dumitru TA (1993) A new computer-automated microscope stage system for fission-track analysis. Nucl Tracks Radiat Meas 21(4):575–580CrossRefGoogle Scholar
  2. 2.
    Sylvester PJ (2008) Laser ablation-ICP-MS in the earth sciences: current practices and outstanding issues, vol. 40. Mineralogical Association of CanadaGoogle Scholar
  3. 3.
    Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216(3–4):249–270CrossRefGoogle Scholar
  4. 4.
    Dodson MH, Compston W, Williams IS, Wilson JF (1988) A search for ancient detrital zircons in Zimbabwean sediments. J Geol Soc 145(6):977–983CrossRefGoogle Scholar
  5. 5.
    Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224(3–4):441–451CrossRefGoogle Scholar
  6. 6.
    Sircombe KN (2004) AgeDisplay: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30(1):21–31CrossRefGoogle Scholar
  7. 7.
    Gehrels GE (2000) Introduction to detrital zircon studies of Paleozoic and Triassic strata in Western Nevada and Northern California. Geol Soc Am Spec Pap 347:1–17Google Scholar
  8. 8.
    Gehrels GE, Blakey R, Karlstrom KE, Timmons JM, Dickinson B, Pecha M (2011) Detrital zircon U–Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona. Lithosphere 3(3):183–200CrossRefGoogle Scholar
  9. 9.
    Yang J, Gao S, Chen C, Tang Y, Yuan H, Gong H, Xie S, Wang J (2009) Episodic crustal growth of North China as revealed by U–Pb age and Hf isotopes of detrital zircons from modern rivers. Geochim Cosmochim Acta 73(9):2660–2673CrossRefGoogle Scholar
  10. 10.
    Shannon CE, Weaver W (1971) The mathematical theory of communication. University of Illinois Press, IllinoisGoogle Scholar
  11. 11.
    Titterington DM, Smith AF, Makov UE (1985) Statistical analysis of finite mixture distributions, vol 7. Wiley, New YorkGoogle Scholar
  12. 12.
    Ludwig K (2008) Manual for Isoplot 3.7. Berkeley Geochronology Center, BerkeleyGoogle Scholar
  13. 13.
    Sambridge M, Compston W (1994) Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth Planet Sci Lett 128(3–4):373–390CrossRefGoogle Scholar
  14. 14.
    Vermeesch P (2013) Multi-sample comparison of detrital age distributions. Chem Geol 341:140–146CrossRefGoogle Scholar
  15. 15.
    Boltzmann L (1872) Weitere studien über das wärmegleichgewicht unter gasmolekülen, (pp. 270–370). Number 66. Sitzungsberichte Akademie der Wissenschaften: WienGoogle Scholar
  16. 16.
    Tolman R (1938) The principles of statistical mechanics. Courier Dover Publications, New YorkGoogle Scholar
  17. 17.
    Bischoff JL, Williams RW, Rosenbauer RJ, Aramburu A, Arsuaga JL, García N, Cuenca-Bescós G (2007) High-resolution U-series dates from the Sima de los Huesos hominids yields: implications for the evolution of the early Neanderthal lineage. J Archaeol Sci 34(5):763–770CrossRefGoogle Scholar
  18. 18.
    Valenti JA, Fischer DA (2005) Spectroscopic properties of cool stars (SPOCS). I. 1040 F, G, and K dwarfs from Keck, Lick, and AAT planet search programs. Astrophys J Suppl Ser 159(1):141Google Scholar
  19. 19.
    Rojas-Agramonte Y, Kröner A, Demoux A, Xia X, Wang W, Donskaya T, Liu D, Sun M (2011) Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Res 19(3):751–763. Their role in growth of accretionary orogens and mineral endowment, Island ArcsGoogle Scholar
  20. 20.
    Wiedenbeck M, Alle P, Corfu F, Griffin W, Meier M, Oberli F, Quadt AV, Roddick J, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19(1):1–23Google Scholar
  21. 21.
    Patterson C (1956) Age of meteorites and the earth. Geochim Cosmochim Acta 10(4):230–237CrossRefGoogle Scholar
  22. 22.
    Dalrymple GB (2001) The age of the Earth in the twentieth century: a problem (mostly) solved. Geol Soc, Lond, Spec Publ 190(1):205–221CrossRefGoogle Scholar
  23. 23.
    Jones S, Martin RD, Pilbeam D, Bunney S, Dawkins R (1992) The Cambridge encyclopedia of human evolution. Cambridge University Press, CambridgeGoogle Scholar
  24. 24.
    Ruse M, Travis JX (2009) Evolution: the first four billion years. Harvard University Press, Cambrigde, MassachusettsGoogle Scholar
  25. 25.
    Planck Collaboration (2014) Planck 2013 results. I. Overview of products and scientific results. Astron Astrophys 571:A1Google Scholar
  26. 26.
    Bennett C, Larson D, Weiland J, Jarosik N, Hinshaw G, Odegard N, Smith K, Hill R, Gold B, Halpern M (2013) Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. Astrophys J Suppl Ser 208(2):20CrossRefGoogle Scholar
  27. 27.
    Dickinson WR, Gehrels GE (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288(1–2):115–125CrossRefGoogle Scholar
  28. 28.
    Cha S (2007) Comprehensive survey on distance/similarity measures between probability/density functions. Int J Math Model Methods Appl Sci 1(4):300–307Google Scholar
  29. 29.
    Xiao W, Windley BF, Hao J, Zhai M (2003) Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 22(6)Google Scholar
  30. 30.
    Cope T, Ritts BD, Darby BJ, Fildani A, Graham SA (2005) Late Paleozoic sedimentation on the northern margin of the North China Block: implications for regional tectonics and climate change. Int Geol Rev 47(3):270–296CrossRefGoogle Scholar
  31. 31.
    Jian P, Liu D, Kröner A, Windley BF, Shi Y, Zhang F, Shi G, Miao L, Zhang W, Zhang Q, Zhang L, Ren J (2008) Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth. Lithos 101(3–4):233–259CrossRefGoogle Scholar
  32. 32.
    Jian P, Liu D, Kröner A, Windley BF, Shi Y, Zhang W, Zhang F, Miao L, Zhang L, Tomurhuu D (2010) Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos 118(1–2):169–190CrossRefGoogle Scholar
  33. 33.
    Zhang S-H, Zhao Y, Ye H, Liu J-M, Hu Z-C (2014b) Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt. Geol Soc Am Bull 126(9–10):1275–1300CrossRefGoogle Scholar
  34. 34.
    Dickinson W (1995) Forearc basins. Tectonics of sedimentary basins. Blackwell Science, Oxford, pp 221–261Google Scholar
  35. 35.
    Underwood M, Moore G (1995) Trenches and trench-slope basins. Tectonics Sediment Basins 179–219Google Scholar
  36. 36.
    Leeder MR (2001) Sedimentology and sedimentary basins: from turbulence to tectonics. Blackwell Science, OxfordGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of GeosciencesUniversity of TübingenTübingenGermany

Personalised recommendations