Advertisement

Methodology

  • Paul R. EizenhöferEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Clastic sedimentary rocks are a unique geological archive, which contain crucial geological information on the sedimentary depositional environment, the tectonic setting, the sedimentary provenance terranes, and the relative palaeo-geographic positions of sedimentary basins and their respective catchments. The broad field of sedimentary provenance analysis integrates a large variety of analytical tools to reconstruct the geological framework of sedimentary rock formation.

References

  1. 1.
    Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216(3–4):249–270CrossRefGoogle Scholar
  2. 2.
    Blichert-Toft J, Albarède F (1997) The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148(1–2):243–258CrossRefGoogle Scholar
  3. 3.
    Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273(1–2):48–57CrossRefGoogle Scholar
  4. 4.
    Cha S (2007) Comprehensive survey on distance/similarity measures between probability/density functions. Int J Math Model Methods Appl Sci 1(4):300–307Google Scholar
  5. 5.
    Deza M-M, Deza E (2006) Dictionary of distances. Elsevier BVGoogle Scholar
  6. 6.
    Dodson MH, Compston W, Williams IS, Wilson JF (1988) A search for ancient detrital zircons in Zimbabwean sediments. J Geol Soc 145(6):977–983CrossRefGoogle Scholar
  7. 7.
    Fralick P (2003) Geochemistry of clastic sedimentary rocks: ratio techniques. In: Lentz D (ed) Geochemistry of sediments and sedimentary rocks. Geological Association of Canada, St. John’s, pp 85–103Google Scholar
  8. 8.
    Fralick P, Kronberg B (1997) Geochemical discrimination of clastic sedimentary rock sources. Sediment Geol 113(1–2):111–124CrossRefGoogle Scholar
  9. 9.
    Gehrels G (2011) Detrital zircon U-Pb geochronology: current methods and new opportunities. In: Busby C, Azor A (eds) Tectonics of sedimentary basins: recent advances. Wiley, Chichester, UK, pp 45–62Google Scholar
  10. 10.
    Gehrels GE, Valencia VA, Ruiz J (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochem Geophys Geosyst 9(3):1–13CrossRefGoogle Scholar
  11. 11.
    Griffin W, Pearson N, Belousova E, Jackson S, van Achterbergh E, O’Reilly SY, Shee S (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64(1):133–147CrossRefGoogle Scholar
  12. 12.
    Haughton PDW, Todd SP, Morton AC (1991) Sedimentary provenance studies. Geol Soc Lond Spec Publ 57(1):1–11CrossRefGoogle Scholar
  13. 13.
    Hu Z, Liu Y, Chen L, Zhou L, Li M, Zong K, Zhu L, Gao S (2011) Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution. J Anal AtIc Spectrom 26:425–430CrossRefGoogle Scholar
  14. 14.
    Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211(1–2):47–69CrossRefGoogle Scholar
  15. 15.
    Li X-H, Li Z-X, Wingate MT, Chung S-L, Liu Y, Lin G-C, Li W-X (2006) Geochemistry of the 755 Ma Mundine Well dyke swarm, Northwestern Australia: part of a Neoproterozoic mantle superplume beneath Rodinia? Precambrian Res 146(1–2):1–15CrossRefGoogle Scholar
  16. 16.
    Liu Y, Gao S, Hu Z, Gao C, Zong K, Wang D (2009) Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J Petrol 51(1–2):537–571Google Scholar
  17. 17.
    Liu Y, Hu Z, Zong K, Gao C, Gao S, Xu J, Chen H (2010) Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull 55(15):1535–1546CrossRefGoogle Scholar
  18. 18.
    Ludwig K (2008) Manual for Isoplot 3.7. Berkeley Geochronology Center, BerkeleyGoogle Scholar
  19. 19.
    Machado N, Simonetti A (2001) U-Pb dating and Hf isotopic composition of zircons by laser ablation-MC-ICP-MS. In: Sylvester P (ed) Laser ablation-ICP-MS in the earth sciences: principles and applications, vol 29. Mineralogical Association of Canada, pp. 121–146Google Scholar
  20. 20.
    Morel M, Nebel O, Nebel-Jacobsen Y, Miller J, Vroon P (2008) Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem Geol 255(1–2):231–235CrossRefGoogle Scholar
  21. 21.
    Pelto CR (1954) Mapping of multicomponent systems. J Geol 62:501–511CrossRefGoogle Scholar
  22. 22.
    Satkoski AM, Wilkinson BH, Hietpas J, Samson SD (2013) Likeness among detrital zircon populations—an approach to the comparison of age frequency data in time and space. Geol Soc Am Bull 125(11–12):1783–1799CrossRefGoogle Scholar
  23. 23.
    Shannon CE, Weaver W (1971) The mathematical theory of communication. University of Illinois Press, IllinoisGoogle Scholar
  24. 24.
    Sircombe KN (2004) AgeDisplay: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Comput Geosci 30(1):21–31CrossRefGoogle Scholar
  25. 25.
    Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249(1–2):1–35CrossRefGoogle Scholar
  26. 26.
    Smosna R, Bruner KR, Burns A (1999) Numerical analysis of sandstone composition, provenance, and paleogeography. J Sediment Res 69(5):1063–1070CrossRefGoogle Scholar
  27. 27.
    Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219(3–4):311–324CrossRefGoogle Scholar
  28. 28.
    Sylvester PJ (2008) Laser ablation-ICP-MS in the earth sciences: current practices and outstanding issues, vol 40. Mineralogical Association of CanadaGoogle Scholar
  29. 29.
    Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224(3–4):441–451CrossRefGoogle Scholar
  30. 30.
    Wiedenbeck M, Alle P, Corfu F, Griffin W, Meier M, Oberli F, von Quadt A, Roddick J, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newsl 19(1):1–23Google Scholar
  31. 31.
    Woodhead J, Hergt J, Shelley M, Eggins S, Kemp R (2004) Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem Geol 209(1–2):121–135CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of GeosciencesUniversity of TübingenTübingenGermany

Personalised recommendations