Advertisement

Combustion and Cookstoves

  • Sumal Nandasena
  • A. R. Wickremasinghe
  • Nalini Sathiakumar
Chapter
Part of the Current Topics in Environmental Health and Preventive Medicine book series (CTEHPM)

Abstract

The cookstove determines the fuel type to be used for combustion. The amount of emission and composition of air pollutants is based on the fuel and cookstove type which is varied geographically. Combustion of solid fuel for cooking purpose is the key source of household air pollution in many developing countries leading to various adverse health impacts. Health impact due to solid fuel combustion for cooking are in respiratory system (i.e., lower respiratory tract infections, chronic obstructive pulmonary disease), cardiovascular system (e.g., high blood pressure, elevations in electrocardiograms), pregnancy (e.g., low birth weight, stillbirths); causes cancer (e.g., lung cancer), and affect neurodevelopment of young children. Appropriate interventions and techniques could prevent and control the household air pollution by minimising the emission from the source (e.g., shifting from solid fuels to clean fuels) improving the living environment (e.g., increase the ventilation by having windows, doors and chimney in the kitchen; and modifying the behaviour and practices of cookstove users (e.g., amount and type of solid fuel use).

Keywords

Solid fuel Improved cook stoves Cooking energy Biomass Energy ladder 

References

  1. 1.
    Nandasena S, Wickremasinghe AR, Sathiakumar N. Biomass fuel use for cooking in Sri Lanka: analysis of data from national demographic health surveys. Am J Ind Med. 2012;55:1122–8.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    WHO. Burden of disease from household air pollution for 2012.Google Scholar
  3. 3.
    Balakrishnan K, Mehta S, Ghosh S, Johnson M, Brauer M, Zhang J, Naeher L, Smith KR. Review 5: population levels of household air pollution and exposures. Geneva: WHO Indoor Air Quality Guidelines: Household Fuel Combustion; 2014.Google Scholar
  4. 4.
    Munoz C, Droppelmann A, Erazo M, Aceituno P, Orellana C, Parro J, Mesias S, Marchetti N, Navas-Acien A, Iglesias V. Occupational exposure to polycyclic aromatic hydrocarbons: a cross-sectional study in bars and restaurants in Santiago, Chile. Am J Ind Med. 2016;59:887–96.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    WHO. Household fuel combustion who guidelines for indoor air quality. Geneva; 2014.Google Scholar
  6. 6.
    Leavey A, Patel S, Martinez R, Mitroo D, Fortenberry C, Walker M, Williams B, Biswas P. Organic and inorganic speciation of particulate matter formed during different combustion phases in an improved cookstove. Environ Res. 2017;158:33–42.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bruce N, Perez-Padilla R, Albalak R. Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Organ. 2000;78:1078–92.PubMedPubMedCentralGoogle Scholar
  8. 8.
    WHO. Air quality guidelines: global update 2005. 2006.Google Scholar
  9. 9.
    Chartier R, Phillips M, Mosquin P, Elledge M, Bronstein K, Nandasena S, Thornburg V, Thornburg J, Rodes C. A comparative study of human exposures to household air pollution from commonly used cookstoves in Sri Lanka. Indoor Air. 2017;27:147.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Mukhopadhyay R, Sambandam S, Pillarisetti A, Jack D, Mukhopadhyay K, Balakrishnan K, Vaswani M, Bates MN, Kinney P, Arora N, Smith K. Cooking practices, air quality, and the acceptability of advanced cookstoves in Haryana, India: an exploratory study to inform large-scale interventions. Glob Health Action. 2012;5:19016.CrossRefGoogle Scholar
  11. 11.
    Hu W, Downward GS, Reiss B, Xu J, Bassig BA, Hosgood HD, Zhang L, Seow WJ, Wu G, Chapman RS, Tian L, Wei F, Vermeulen R, Lan Q. Personal and indoor PM2.5 exposure from burning solid fuels in vented and unvented stoves in a rural region of China with a high incidence of lung cancer. Environ Sci Technol. 2014;48:8456–64.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Naeher LP, Leaderer BP, Smith KR. Particulate matter and carbon monoxide in highland Guatemala: indoor and outdoor levels from traditional and improved wood stoves and gas stoves. Indoor Air. 2000;10:200–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Bartington SE, Bakolis I, Devakumar D, Kurmi OP, Gulliver J, Chaube G, Manandhar DS, Saville NM, Costello A, Osrin D, Hansell AL, Ayres JG. Patterns of domestic exposure to carbon monoxide and particulate matter in households using biomass fuel in Janakpur, Nepal. Environ Pollut. 2017;220(Pt A):38–45.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Nandasena YLS, Wickremasinghe AR, Sathiakumar N. Air pollution and health in Sri Lanka: a review of epidemiologic studies. BMC Public Health. 2010;10:300.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Clark ML, Peel JL, Balakrishnan K, Breysse PN, Chillrud SN, Naeher LP, Rodes CE, Vette AF, Balbus JM. Health and household air pollution from solid fuel use: the need for improved exposure assessment. Environ Health Perspect. 2013;121:1120.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Rylance J, Gordon SB, Naeher LP, Patel A, Balmes JR, Adetona O, Rogalsky DK, Martin WJ II. Household air pollution: a call for studies into biomarkers of exposure and predictors of respiratory disease. Am J Physiol Lung Cell Mol Physiol. 2013;304:L571–8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Weinstein JR, Asteria-Peñaloza R, Diaz-Artiga A, Davila G, Hammond SK, Ryde IT, Meyer JN, Benowitz N, Thompson LM. Exposure to polycyclic aromatic hydrocarbons and volatile organic compounds among recently pregnant rural Guatemalan women cooking and heating with solid fuels. Int J Hyg Environ Health. 2017;220:726–35.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Guarnieri MJ, Diaz JV, Basu C, Diaz A, Pope D, Smith KR, Smith-Sivertsen T, Bruce N, Solomon C, McCracken J, Balmes JR. Effects of woodsmoke exposure on airway inflammation in rural guatemalan women. PLoS One. 2014;9:e88455.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zhou H, Kobzik L. Effect of concentrated ambient particles on macrophage phagocytosis and killing of Streptococcus pneumoniae. Am J Respir Cell Mol Biol. 2007;36:460–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Heinzerling AP, Guarnieri MJ, Mann JK, Diaz JV, Thompson LM, Diaz A, Bruce NG, Smith KR, Balmes JR. Lung function in woodsmoke-exposed Guatemalan children following a chimney stove intervention. Thorax. 2016;71:421–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Perez-Padilla R, Schilmann A, Riojas-Rodriguez H. Respiratory health effects of indoor air pollution. Int J Tuberc Lung Dis. 2010;14:1079.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Asante KP, Kinney P, Zandoh C, Van Vliet E, Nettey E, Abokyi L, Owusu-Agyei S, Jack D. Childhood respiratory morbidity and cooking practices among households in a predominantly rural area of ghana. Afr J Infect Dis. 2016;10:102–10.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Jackson S, Mathews KH, Pulanic D, Falconer R, Rudan I, Campbell H, Nair H. Risk factors for severe acute lower respiratory infections in children: a systematic review and meta-analysis. Croat Med J. 2013;54:110–21.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Dherani M, Pope D, Mascarenhas M, Smith KR, Weber M, Bruce N. Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: a systematic review and meta-analysis. Bull World Health Organ. 2008;86:390–398C.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Gordon SB, Bruce NG, Grigg J, Hibberd PL, Kurmi OP, Lam KH, Mortimer K, Asante KP, Balakrishnan K, Balmes J, Bar-Zeev N, Bates MN, Breysse PN, Buist S, Chen Z, Havens D, Jack D, Jindal S, Kan H, Mehta S, Moschovis P, Naeher L, Patel A, Perez-Padilla R, Pope D, Rylance J, Semple S, Martin WJ. Respiratory risks from household air pollution in low and middle income countries. Lancet Respir Med. 2014;2:823–60.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Torres-Duque CA, García-Rodriguez MC, Gonzáez-García M. Enfermedad pulmonar obstructiva crónica por humo de leña: ?un fenotipo diferente o una entidad distinta? Arch Bronconeumol. 2016;52:425–31.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Baumgartner J, Carter E, Schauer JJ, Ezzati M, Daskalopoulou SS, Valois M-F, Shan M, Yang X. Household air pollution and measures of blood pressure, arterial stiffness and central haemodynamics. Heart. 2018;104:1515.  https://doi.org/10.1136/heartjnl-2017-312595.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Neupane M, Basnyat B, Fischer R, Froeschl G, Wolbers M, Rehfuess EA. Sustained use of biogas fuel and blood pressure among women in rural Nepal. Environ Res. 2015;136:343–51.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Wylie BJ, Matechi E, Kishashu Y, Fawzi W, Premji Z, Coull BA, Hauser R, Ezzati M, Roberts DJ. Placental pathology associated with household air pollution in a cohort of pregnant women from Dar es Salaam, Tanzania. Environ Health Perspect. 2016;125:134–40.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Amegah AK, Quansah R, Jaakkola JJK. Household air pollution from solid fuel use and risk of adverse pregnancy outcomes: a systematic review and meta-analysis of the empirical evidence. PLoS One. 2014;9:e113920.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Khan MN, Nurs CZ B, MM I, Islam MR, Rahman MM. Household air pollution from cooking and risk of adverse health and birth outcomes in Bangladesh: a nationwide population-based study. Environ Health. 2017;16:57.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bruce N, Pope D, Rehfuess E, Balakrishnan K, Adair-Rohani H, Dora C. WHO indoor air quality guidelines on household fuel combustion: Strategy implications of new evidence on interventions and exposure–risk functions. Atmos Environ. 2015;106:451–7.CrossRefGoogle Scholar
  33. 33.
    Kurmi OP, Arya PH, Lam K-BH, Sorahan T, Ayres JG. Lung cancer risk and solid fuel smoke exposure: a systematic review and meta-analysis. Eur Respir J. 2012;40:1228–37.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Josyula S, Lin J, Xue X, Rothman N, Lan Q, Rohan TE, Hosgood HD. Household air pollution and cancers other than lung: a meta-analysis. Environ Health. 2015;14:24.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hsiao C-L, Kuo H-C, Huang C-C. Delayed encephalopathy after carbon monoxide intoxication—long-term prognosis and correlation of clinical manifestations and neuroimages. Acta Neurol Taiwanica. 2004;13:64–70.Google Scholar
  36. 36.
    Kondziella D, Danielsen ER, Hansen K, Thomsen C, Jansen EC, Arlien-Soeborg P. 1H MR spectroscopy of gray and white matter in carbon monoxide poisoning. J Neurol. 2009;256:970–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Dix-Cooper L, Eskenazi B, Romero C, Balmes J, Smith KR. Neurodevelopmental performance among school age children in rural Guatemala is associated with prenatal and postnatal exposure to carbon monoxide, a marker for exposure to woodsmoke. Neurotoxicology. 2012;33:246–54.PubMedCrossRefGoogle Scholar
  38. 38.
    Morales E, Julvez J, Torrent M, de Cid R, Guxens M, Bustamante M, Kunzli N, Sunyer J. Association of early-life exposure to household gas appliances and indoor nitrogen dioxide with cognition and attention behavior in preschoolers. Am J Epidemiol. 2009;169:1327–36.PubMedCrossRefGoogle Scholar
  39. 39.
    Edwards SC, Jedrychowski W, Butscher M, Camann D, Kieltyka A, Mroz E, Flak E, Li Z, Wang S, Rauh V, Perera F. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Environ Health Perspect. 2010;118:1326–31.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Jindal SK. Relationship of household air pollution from solid fuel combustion with tuberculosis? Indian J Med Res. 2014;140:167–70.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Glynn RJ, Rosner B, Christen WG. Evaluation of risk factors for cataract types in a competing risks framework. Ophthalmic Epidemiol. 2009;16:98–106.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    West SK, Bates MN, Lee JS, Schaumberg DA, Lee DJ, Adair-Rohani H, Chen DF, Araj H. Is household air pollution a risk factor for eye disease? Int J Environ Res Public Health. 2013;10:5378–98.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ravilla TD, Gupta S, Ravindran RD, Vashist P, Krishnan T, Maraini G, Chakravarthy U, Fletcher AE. Use of cooking fuels and cataract in a population-based study: the India Eye Disease Study. Environ Health Perspect. 2016;124:1857–62.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Tanchangya J, Geater AF. Use of traditional cooking fuels and the risk of young adult cataract in rural Bangladesh: a hospital-based case-control study. BMC Ophthalmol. 2011;11:16.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ballard-Tremeer G, Mathee A. Review of interventions to reduce the exposure of women and young children to indoor air pollution in developing countries. Washington DC: WHO/USAID consultation on Indoor Air Pollution and Health; 2000.Google Scholar
  46. 46.
    Thomas E, Wickramasinghe K, Mendis S, Roberts N, Foster C. Improved stove interventions to reduce household air pollution in low and middle income countries: a descriptive systematic review. BMC Public Health. 2015;15:650.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Muralidharan V, Sussan T, Limaye S, Koehler K, Williams D, Rule A, Juvekar S, Breysse P, Salvi S, Biswal S. Field testing of alternative cookstove performance in a rural setting of western India. Int J Environ Res Public Health. 2015;12:1773–87.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Sidhu MK, Ravindra K, Mor S, John S. Household air pollution from various types of rural kitchens and its exposure assessment. Sci Total Environ. 2017;586:419–29.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sumal Nandasena
    • 1
  • A. R. Wickremasinghe
    • 2
  • Nalini Sathiakumar
    • 3
  1. 1.Office of the Regional Director of Health ServicesKalutaraSri Lanka
  2. 2.Department of Public Health, Faculty of MedicineUniversity of KelaniyaRagamaSri Lanka
  3. 3.Department of EpidemiologySchool of Public Health, University of Alabama at BirminghamBirminghamUSA

Personalised recommendations