Advertisement

Applications of Molecular Tools in Systematics and Population Genetics of Lobsters

  • Jeena N. SEmail author
  • Gopalakrishnan A
  • E. V. Radhakrishnan
  • Jena J. K
Chapter

Abstract

Recent advances in molecular tools have facilitated the detection of new species, differentiation of cryptic species, revision in taxonomy, assessment of evolutionary relationships, phylogenetic analysis, phylogeography and stock delineation studies in marine lobsters. This chapter discusses the implications of these tools in lobster research through a comprehensive review of the works carried out globally across different species. The use of molecular markers for resolving conflicting issues in phylogeny and evolution of marine lobsters has been detailed at the beginning of this chapter. An account on the application of ‘DNA barcoding’ for species and larval identification of lobsters and use of multiple genes in their phylogenetic systematics as well as distinction of lineages is described afterwards. Mitochondrial genomes have been utilised as a major genetic marker in many areas of research. The complete mitochondrial genome of various lobster species characterised so far is given for reference. Better knowledge on the diet of planktonic phyllosoma larvae of lobsters is important for commercialisation of lobster mariculture. Molecular diet analysis of larvae utilising conventional markers and high-throughput DNA sequencing methods has been explained. Efforts to effectively manage a fishery require an understanding of population demographics and connectivity. By defining the scale of subpopulation structure shown by a species through genetic analysis, management units can be accurately identified. The stock delineation studies in lobsters using different types of molecular markers have been discussed in this chapter. DNA microsatellites are considered as a dominant class of markers in genomic analysis for assessing genetic structure of populations, linkage, parentage and relatedness. The use of highly polymorphic microsatellite markers with their application in diverse fields like detection of fine-scale genetic structure over small spatial scales for better management and their utility in assigning marine-protected areas (MPAs), parentage analysis, etc., are narrated. The application of gene sequencing and next-generation sequencing (NGS) derived markers in lobster research is detailed, and it is anticipated that these markers due to their improved analytical power and high precision will soon replace the mtDNA and microsatellite markers used in this field since 2004. The present scenario of lobster genetic research in India is reviewed at the end.

Keywords

Molecular taxonomy Stock delineation Microsatellite markers Gene sequencing 

References

  1. Abdullah, M. F., Chow, S., Sakai, M., Cheng, J. H., & Imai, H. (2014). Genetic diversity and population structure of pronghorn spiny lobster Panulirus penicillatus in the Pacific region. Pacific Science, 68(2), 197–211.CrossRefGoogle Scholar
  2. Abdullah, M. F., Cheng, J. H., Chen, T. I., & Imai, H. (2017). Development of compound polymorphic microsatellite markers for the pronghorn spiny lobster Panulirus penicillatus and comparison of microsatellite data with those of a previous mitochondrial DNA study performed in the northwestern Pacific. Biogeography, 19, 61–68.Google Scholar
  3. Ahn, D. H., Min, G. S., Park, J. K., & Kim, S. (2016a). The complete mitochondrial genome of the Violet-spotted reef lobster Enoplometopus debelius (Crustacea, Astacidea, Enoplometopidae). Mitochondrial DNA Part A, 27(3), 1819–1820.Google Scholar
  4. Ahn, D. H., Kim, S., Park, J. K., Shin, S., & Min, G. S. (2016b). The complete mitochondrial genome of the Japanese fan lobster Ibacus ciliatus (Crustacea, Achelata, Scyllaridae). Mitochondrial DNA Part A, 27(3), 1871–1873.Google Scholar
  5. Ahn, D. H., Min, G. S., Park, J. K., & Kim, S. (2016c). The complete mitochondrial genome of the red-banded lobster Metanephrops thomsoni (Crustacea, Astacidea, Nephropidae): a novel gene order. Mitochondrial DNA Part A, 27(4), 2663–2664.CrossRefGoogle Scholar
  6. Ahyong, S. T., & O’Meally, D. (2004). Phylogeny of the Decapoda Reptantia: resolution using three molecular loci and morphology. The Raffles Bulletin of Zoology, 52(2), 673–693.Google Scholar
  7. André, C., & Knutsen, H. (2010). Development of twelve novel microsatellite loci in the European lobster (Homarus gammarus). Conservation Genetics Resources, 2(1), 233–236.CrossRefGoogle Scholar
  8. Ardalan, M., Sari, A., Rezvani-Gilkolaei, S., & Pourkazemi, M. (2010). Phylogeny of Iranian coastal lobsters inferred from mitochondrial DNA Restriction Fragment Length Polymorphism. Acta Zoologica Bulgarica, 62(3), 331–338.Google Scholar
  9. Avise, J. C. (1994). Molecular Markers, Natural History and Evolution. New York/London: Chapman and Hall.CrossRefGoogle Scholar
  10. Babbucci, M., Buccoli, S., Cau, A., Cannas, R., Goñi, R., Díaz, D., & Patarnello, T. (2010). Population structure, demographic history, and selective processes: Contrasting evidences from mitochondrial and nuclear markers in the European spiny lobster Palinurus elephas (Fabricius, 1787). Molecular Phylogenetics and Evolution, 56(3), 1040–1050.PubMedCrossRefGoogle Scholar
  11. Baisre, J. A. (1994). Phyllosoma larvae and the phylogeny of Palinuroidea (Crustacea: Decapoda): a review. Marine and Freshwater Research, 45(6), 925–944.CrossRefGoogle Scholar
  12. Benestan, L., Gosselin, T., Perrier, C., Sainte-Marie, B., Rochette, R., & Bernatchez, L. (2015). RAD genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (Homarus americanus). Molecular Ecology, 24(13), 3299–3315.PubMedCrossRefGoogle Scholar
  13. Ben-Horin, T., Iacchei, M., Selkoe, K. A., Mai, T. T., & Toonen, R. J. (2009). Characterization of eight polymorphic microsatellite loci for the California spiny lobster, Panulirus interruptus and cross-amplification in other achelate lobsters. Conservation Genetics Resources, 1(1), 193.CrossRefGoogle Scholar
  14. Berry, P. F. (1974). A revision of the Panulirus homarus- group of spiny lobsters (Decapoda, Palinuridae). Crustaceana, 27(1), 31–42.CrossRefGoogle Scholar
  15. Burton, T. E., & Davie, P. J. F. (2007). A revision of the shovel-nosed lobsters of the genus Thenus (Crustacea: Decapoda: Scyllaridae), with descriptions of three new species. Zootaxa, 1429, 1–38.CrossRefGoogle Scholar
  16. Cannas, R., Cau, A., Deiana, A. M., Salvadori, S., & Tagliavini, J. (2006). Discrimination between the Mediterranean spiny lobsters Palinurus elephas and P. mauritanicus (Crustacea: Decapoda) by mitochondrial sequence analysis. Hydrobiologia, 557(1), 1–4.CrossRefGoogle Scholar
  17. Carvalho, G. R., & Hauser, L. (1994). Molecular genetics and the stock concept in fisheries. Reviews in Fish Biology and Fisheries, 4(3), 326–350.CrossRefGoogle Scholar
  18. Chakraborty, R. D., Maheswarudu, G., Purushothaman, P., Kuberan, G., Sebastian, J., Radhakrishnan, E. V., & Thangaraja, R. (2016). Nuclear and mitochondrial DNA markers based identification of blunthorn lobster Palinustus waguensis Kubo, 1963 from South-west coast of India. Indian Journal of Biotechnology, 15(2), 172–177.Google Scholar
  19. Chan, T. Y. (2010). Annotated Checklist of the World’s Marine Lobsters (Crustacea: Decapoda: Astacidea, Glypheidea, Achelata, Polychelida). The Raffles Bulletin of Zoology, 23, 153–181.Google Scholar
  20. Chan, T. Y., Ho, K. C., Li, C. P., & Chu, K. H. (2009). Origin and diversification of the clawed lobster genus Metanephrops (Crustacea: Decapoda: Nephropidae). Molecular Phylogenetics and Evolution, 50(3), 411–422.PubMedCrossRefGoogle Scholar
  21. Chow, S., Suzuki, N., Imai, H., & Yoshimura, T. (2006). Molecular species identification of spiny lobster phyllosoma larvae of the genus Panulirus from the northwestern Pacific. Marine Biotechnology, 8(3), 260–267.PubMedCrossRefGoogle Scholar
  22. Chow, S., Suzuki, S., Matsunaga, T., Lavery, S., Jeffs, A., & Takeyama, H. (2010). Investigation on natural diets of larval marine animals using peptide nucleic acid-directed polymerase chain reaction clamping. Marine Biotechnology, 13, 305–313.PubMedCrossRefGoogle Scholar
  23. Chow, S., Jeffs, A., Miyake, Y., Konishi, K., Okazaki, M., Suzuki, N., & Sakai, M. (2011). Genetic Isolation between the Western and Eastern Pacific Populations of Pronghorn Spiny Lobster Panulirus penicillatus. PLoS One, 6(12), e29280.  https://doi.org/10.1371/journal.pone.0029280.CrossRefPubMedPubMedCentralGoogle Scholar
  24. CMFRI Annual report. (2010–2011). Central Marine Fisheries Research Institute, Cochin. pp: 163.Google Scholar
  25. CMFRI Annual report. (2017–2018). Central Marine Fisheries Research Institute, Cochin. pp: 24.Google Scholar
  26. Connell, S. C., O'Rorke, R., Jeffs, A. G., & Lavery, S. D. (2014). DNA identification of the phyllosoma diet of Jasus edwardsii and Scyllarus sp. New Zealand Journal of Marine and Freshwater Research, 48(3), 416–429.CrossRefGoogle Scholar
  27. Cuéllar-Pinzón, J., Presa, P., Hawkins, S. J., & Pita, A. (2016). Genetic markers in marine fisheries: Types, tasks and trends. Fisheries Research, 173, 194–205.CrossRefGoogle Scholar
  28. Dao, H. T., Todd, E. V. & Jerry, D. R. 2013. Characterization of polymorphic microsatellite loci for the spiny lobster Panulirus spp. and their utility to be applied to other Panulirus lobsters. Conserv. Genet. Resour., 5 (1): 43-46.Google Scholar
  29. Dao, H. T., Smith-Keune, C., Wolanski, E., Jones, C. M., & Jerry, D. R. (2015). Oceanographic currents and local ecological knowledge indicate, and genetics does not refute, a contemporary pattern of larval dispersal for the ornate spiny lobster, Panulirus ornatus in the South-East Asian Archipelago. PloS one, 10(5), e0124568.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Davie, P. J. F. (1990). A new genus and species of marine crayfish, Palibythus magnificus, and new records of Palinurellus (Decapoda: Palinuridae) from the Pacific Ocean. Invertebrate Taxonomy, 4(4), 685–695.CrossRefGoogle Scholar
  31. Delghandi, M., Goddard, S., Jerry, D. R., Dao, H. T., Afzal, H., & Al-Jardani, S. S. (2015). Isolation, characterization, and multiplexing of novel microsatellite markers for the tropical scalloped spiny lobster (Panulirus homarus). Genetics and Molecular Research, 14(4), 19066–19070.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Delghandi, M., Afzal, H., Al Hinai, M. S. N., Al-Breiki, R. D. G., Jerry, D. R., & Dao, H. T. (2016). Novel polymorphic microsatellite markers for Panulirus ornatus and their cross-species primer amplification in Panulirus homarus. Animal Biotechnology, 27(4), 310–314.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Delghandi, M., Saif Nasser Al Hinai, M., Afzal, H., & Khalfan Al-Wahaibi, M. (2017). Parentage analysis of tropical spiny lobster (Panulirus homarus) by microsatellite markers. Aquaculture Research, 48, 4718–4724.  https://doi.org/10.1111/are.13293.CrossRefGoogle Scholar
  34. Deshmukh, V. D. (2001). Collapse of sand lobster fishery in Bombay waters. Indian Journal of Fisheries, 48(1), 71–76.Google Scholar
  35. Dharani, G., Maitrayee, G. A., Karthikayalu, S., Kumar, T. S., Anbarasu, M., & Vijayakumaran, M. (2009). Identification of Panulirus homarus puerulus larvae by restriction fragment length polymorphism of mitochondrial cytochrome oxidase I gene. Pakistan Journal of Biological Sciences (PJBS), 12(3), 281.CrossRefGoogle Scholar
  36. DiNardo, G. T., & Moffitt, R. B. (2007). The Northwestern Hawaiian Islands lobster fishery: A targeted slipper lobster fishery. In The biology and fisheries of the slipper lobster (pp. 243–261). Boca Raton: CRC Press.CrossRefGoogle Scholar
  37. Diniz, F. M., Maclean, N., Ogawa, M., Paterson, I. G., & Bentzen, P. (2005). Microsatellites in the overexploited spiny lobster, Panulirus argus: Isolation, characterization of loci and potential for intraspecific variability studies. Conservation Genetics, 6(4), 637–641.CrossRefGoogle Scholar
  38. Diniz, F. M., Ogawa, M., Cintra, I. H. A., Maclean, N., & Bentzen, P. (2010). Genetic identification of fishing stocks: New tools for population studies of the spiny lobster Panulirus argus (Latreille, 1804). Boletim Técnico-Científico do Cepnor, 10(1), 95–111.CrossRefGoogle Scholar
  39. Dixon, C. J., Ahyong, S. T., & Schram, F. R. (2003). A new hypothesis of decapod phylogeny. Crustaceana, 76(8), 935–975.CrossRefGoogle Scholar
  40. Duarte, L. F. D. A., Severino-Rodrigues, E., & Gasalla, M. A. (2010). Slipper lobster (Crustacea, Decapoda, Scyllaridae) fisheries off the southeastern coast of Brazil: I. Exploitation patterns between 23°00′ and 29°65′S. Fisheries Research, 102(1), 141–151.CrossRefGoogle Scholar
  41. Ekblom, R., & Galindo, J. (2011). Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity, 107, 1–15.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ellis, C. D., Hodgson, D. J., André, C., Sørdalen, T. K., Knutsen, H., & Griffiths, A. G. (2015). Genotype reconstruction of paternity in European lobsters (Homarus gammarus). PLoS One, 10(11), e0139585.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ellis, C. D., Hodgson, D. J., Daniels, C. L., Collins, M., & Griffiths, A. G. (2017). Population genetic structure in European lobsters: implications for connectivity, diversity and hatchery stocking. Marine Ecology Progress Series, 563, 123–137.CrossRefGoogle Scholar
  44. Evans, C. R., & Evans, A. J. (1995). Fisheries ecology of spiny lobsters Panulirus argus (Latreille) and Panulirus guttatus (Latreille) on the Bermuda Platform: estimates of sustainable yields and observations on trends in abundance. Fisheries Research, 24(2), 113–128.CrossRefGoogle Scholar
  45. FAO. (2010). Fishery statistical collections: global production. Food and Agriculture Organization (FAO) of the UN. Google Scholar
  46. Farhadi, A., Farhamand, H., Nematollahi, M. A., Jeffs, A., & Lavery, S. D. (2013). Mitochondrial DNA population structure of the scalloped lobster Panulirus homarus (Linnaeus 1758) from the West Indian Ocean. ICES Journal of Marine Science, 70(7), 1491–1498.CrossRefGoogle Scholar
  47. Farhadi, A., Jeffs, A. G., Farahmand, H., Rejiniemon, T. S., Smith, G., & Lavery, S. D. (2017). Mechanisms of peripheral phylogeographic divergence in the indo-Pacific: lessons from the spiny lobster Panulirus homarus. BMC Evolutionary Biology, 17(1), 195.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Faria, J., Froufe, E., Tuya, F., Alexandrino, P., & Pérez-Losada, M. (2013). Panmixia in the endangered slipper lobster Scyllarides latus from the northeastern Atlantic and western Mediterranean. Journal of Crustacean Biology, 33(4), 557–566.CrossRefGoogle Scholar
  49. Faria, J., Pérez-Losada, M., Cabezas, P., Alexandrino, P., & Froufe, E. (2014). Multiplexing of novel microsatellite loci for the vulnerable slipper lobster Scyllarus arctus (Linnaeus, 1758). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 321(2), 119–123.CrossRefGoogle Scholar
  50. Froufe, E., Cabezas, P., Alexandrino, P., & Pérez-Losada, M. (2011). Comparative phylogeography of three achelata lobster species from Macaronesia (North East Atlantic) (pp. 157–173). Boca Raton: CRC Press.Google Scholar
  51. Gallagher, J., Finarelli, J. A., Jonasson, J. P., & Carlsson, J. (2018). Mitochondrial D-loop DNA analyses of Norway Lobster (Nephrops norvegicus) reveals genetic isolation between Atlantic and Mediterranean populations. bioRxiv, 258392.Google Scholar
  52. Galtier, N., Nabholz, B., Glémin, S., & Hurst, G. D. D. (2009). Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology, 18(22), 4541–4550.PubMedCrossRefGoogle Scholar
  53. Gan, H. M., Tan, M. H., Gan, H. Y., Lee, Y. P., & Austin, C. M. (2016). The complete mitogenome of the Norway lobster Nephrops norvegicus (Linnaeus, 1758) (Crustacea: Decapoda: Nephropidae). Mitochondrial DNA Part A, 27(5), 3179–3180.CrossRefGoogle Scholar
  54. García-Rodríguez, F. J., & Perez-Enriquez, R. (2006). Genetic differentiation of the California spiny lobster Panulirus interruptus (Randall, 1840) along the west coast of the Baja California Peninsula. Mexico Marine Biology, 148(3), 621–629.CrossRefGoogle Scholar
  55. García-Rodríguez, F. J., Perez-Enriquez, R., Medina-Espinoza, A., & Vega-Velázquez, A. (2017). Genetic variability and historic stability of the California spiny lobster Panulirus interruptus in the Gulf of California. Fisheries Research, 185, 130–136.CrossRefGoogle Scholar
  56. George, R. W. (2005). Evolution of life cycles, including migration, in spiny lobsters (Palinuridae). New Zealand Journal of Marine and Freshwater Research, 39(3), 503–514.CrossRefGoogle Scholar
  57. George, R. W. (2006a). Tethys sea fragmentation and speciation of Panulirus spiny lobsters. Crustaceana, 78, 1281–1309.CrossRefGoogle Scholar
  58. George, R. W. (2006b). Tethys origin and subsequent radiation of the spiny lobsters (Palinuridae). Crustaceana, 79(4), 397–422.CrossRefGoogle Scholar
  59. George, R. W., & Main, A. R. (1967). The evolution of spiny lobsters (Palinuridae): a study of evolution in the marine environment. Evolution, 21, 803–820.CrossRefGoogle Scholar
  60. Giraldes, B. W., & Smyth, D. (2016). Recognizing Panulirus meripurpuratus sp. nov. (Decapoda: Palinuridae) in Brazil- Systematic and biogeographic overview of Panulirus species in the Atlantic Ocean. Zootaxa, 4107(3), 353–366.CrossRefGoogle Scholar
  61. Gopal, K., Tolley, K. A., Groeneveld, J. C., & Matthee, C. A. (2006). Mitochondrial DNA variation in spiny lobster Palinurus delagoae suggests genetically structured populations in the southwestern Indian Ocean. Marine Ecology Progress Series, 319, 191–198.CrossRefGoogle Scholar
  62. Groeneveld, J. C., Griffiths, C. L., & Van Dalsen, A. P. (2006). A new species of spiny lobster, Palinurus barbarae (Decapoda, Palinuridae) from Walters Shoals on the Madagascar Ridge. Crustaceana, 79(7), 821–833.CrossRefGoogle Scholar
  63. Groeneveld, J. C., Gopal, K., George, R. W., & Matthee, C. A. (2007). Molecular phylogeny of the spiny lobster genus Palinurus (Decapoda: Palinuridae) with hypotheses on speciation in the NE Atlantic/Mediterranean and SW Indian Ocean. Molecular Phylogenetics and Evolution, 45(1), 102–110.PubMedCrossRefGoogle Scholar
  64. Harding, G. C., Kenchington, E. L., Bird, C. J., Pezzack, D. S., & Landry, D. C. (1997). Genetic relationships among subpopulations of the American lobster (Homarus americanus) as revealed by random amplified polymorphic DNA. Canadian Journal of Fisheries and Aquatic Sciences, 54(8), 1762–1771.CrossRefGoogle Scholar
  65. Hellberg, M. E. (2009). Gene flow and isolation among populations of marine animals. Annual Review of Ecology, Evolution, and Systematics, 40, 291–310.CrossRefGoogle Scholar
  66. Holthuis, L. B. (1985). A revision of the family Scyllaridae (Crustacea: Decapoda: Macrura). I. Subfamily Ibacinae. Zoologische Verhandelingen Leiden, 218(1), 1–130.Google Scholar
  67. Holthuis, L. B. (1991). Marine Lobsters of the world. An Annotated and illustrated catalogue of species of interest to fisheries known to date. FAO Species Catalog, FAO Fisheries and Synopsis., 13:125. FAO-UN, Rome.Google Scholar
  68. Holthuis, L. B. (2002). The Indo-Pacific scyllarine lobsters (Crustacea, Decapoda, Scyllaridae). Zoosystema, 24(3), 499–683.Google Scholar
  69. Hughes, G., & Beaumont, A. R. (2004). A potential method for discriminating between tissue from the European Lobster (Homarus gammarus) and the American Lobster (H. americanus). Crustaceana, 77(3), 371–376.CrossRefGoogle Scholar
  70. Iacchei, M., Gaither, M. R., Bowen, B. W., & Toonen, R. J. (2016). Testing dispersal limits in the sea: Range-wide phylogeography of the pronghorn spiny lobster Panulirus penicillatus. Journal of Biogeography, 43(5), 1032–1044.CrossRefGoogle Scholar
  71. Iamsuwansuk, A., Denduangboripant, J., & Davie, P. J. (2012). Molecular and Morphological Investigations of Shovel-Nosed Lobsters Thenus spp. (Crustacea: Decapoda: Scyllaridae) in Thailand. Zoological Studies, 51(1), 108–117.Google Scholar
  72. Inoue, N., & Sekiguchi, H. (2005). Distribution of Scyllarid phyllosoma larvae (Crustacea: Decapoda: Scyllaridae) in the Kuroshio Subgyre. Journal of Oceanography, 61(3), 389–398.CrossRefGoogle Scholar
  73. Inoue, N., Watanabe, H., Kojima, S., & Sekiguchi, H. (2007). Population structure of Japanese spiny lobster Panulirus japonicus inferred by nucleotide sequence analysis of mitochondrial COI gene. Fisheries Science, 73(3), 550–556.CrossRefGoogle Scholar
  74. Jeena, N. S. (2013). Genetic divergence in lobsters (Crustaceana: Palinuridae and Scyllaridae) from the Indian EEZ, Ph. D Thesis, Cochin University of Science and Technology, Cochin, pp 238.Google Scholar
  75. Jeena, N. S., Gopalakrishnan, A., Kizhakudan, J. K., Radhakrishnan, E. V., Kumar, R., & Asokan, P. K. (2016a). Population genetic structure of the shovel-nosed lobster Thenus unimaculatus (Decapoda, Scyllaridae) in Indian waters based on RAPD and mitochondrial gene sequences. Hydrobiologia, 766(1), 225–236.CrossRefGoogle Scholar
  76. Jeena, N. S., Gopalakrishnan, A., Radhakrishnan, E. V., Kizhakudan, J. K., Basheer, V. S., Asokan, P. K., & Jena, J. K. (2016b). Molecular phylogeny of commercially important lobster species from Indian coast inferred from mitochondrial and nuclear DNA sequences. Mitochondrial DNA Part A., 27(4), 2700–2709.Google Scholar
  77. Jeena, N. S., Gopalakrishnan, A., Radhakrishnan, E. V., Kizhakudan, J. K. & Sajeela K.A 2016c. Signs of panmixia in the scalloped spiny lobster Panulirus homarus (Linnaeus, 1758) along the Indian coast. In: Book of abstracts, Ist International Agrobiodiversity Congress, 06–09 November, New Delhi, p 104Google Scholar
  78. Jeffs, A. (2010). Status and challenges for advancing lobster aquaculture. Journal of the Marine Biological Association of India, 52, 320–326.Google Scholar
  79. Jenkins, T. L., Ellis, C. D., & Stevens, J. R. (2018). SNP discovery in European lobster (Homarus gammarus) using RAD sequencing. Conservation Genetics Resources.  https://doi.org/10.1007/s12686-018-1001-8.CrossRefGoogle Scholar
  80. Jørstad, K. E., Prodöhl, P. A., Agnalt, A. L., Hughes, M., Apostolidis, A. P., Triantafyllidis, A., & Svåsand, T. (2004). Sub-arctic populations of European lobster, Homarus gammarus, in northern Norway. Environmental Biology of Fishes, 69(1), 223–231.Google Scholar
  81. Kennington, W. J., Cadee, S. A., Berry, O., Groth, D. M., Johnson, M. S., & Melville-Smith, R. (2013). Maintenance of genetic variation and panmixia in the commercially exploited western rock lobster (Panulirus cygnus). Conservation Genetics, 14(1), 115–124.CrossRefGoogle Scholar
  82. Kim, S., Lee, S. H., Park, M. H., Choi, H. G., Park, J. K., & Min, G. S. (2011). The complete mitochondrial genome of the American lobster, Homarus americanus (Crustacea, Decapoda). Mitochondrial DNA, 22(3), 47–49.PubMedCrossRefGoogle Scholar
  83. Kim, G., Yoon, T. H., Park, W. G., Park, J. Y., Kang, J. H., Park, H., & Kim, H. W. (2016). Complete mitochondrial genome of Australian spiny lobster, Panulirus cygnus (George, 1962) (Crustacea: Decapoda: Palinuridae) from coast of Australia. Mitochondrial DNA Part A., 27(6), 4576–4577.CrossRefGoogle Scholar
  84. Kittaka, J. (1994). Culture of phyllosomas of spiny lobster and its application to studies of larval recruitment and aquaculture. Crustaceana, 66(3), 258–270.CrossRefGoogle Scholar
  85. Kittaka, J., & Booth, J. D. (2000). Prospectus for aquaculture. In B. F. Phillips & J. Kittaka (Eds.), Spiny lobsters: Fisheries and culture (2nd ed., pp. 465–473). London: Blackwell Science Ltd.CrossRefGoogle Scholar
  86. Kizhakudan, J. K., Radhakrishnan, E. V., George, R. M., Thirumilu, P., Rajapackiam, S., Manibal, C., & Xavier, J. (2004). Phyllosoma larvae of Thenus orientalis and Scyllarus rugosus reared to settlement. The Lobster Newsletter, 17(1).Google Scholar
  87. Konishi, K., Suzuki, N., & Chow, S. (2006). A late-stage phyllosoma larva of the spiny lobster Panulirus echinatus Smith, 1869 (Crustacea: Palinuridae) identified by DNA analysis. Journal of Plankton Research, 28(9), 841–845.CrossRefGoogle Scholar
  88. Kornfield, I., & Moran, P. (1990). Genetics of population differentiation in lobsters. In I. Kornfield (Ed.), Life history of the American Lobsters (pp. 23–24). Orono: Lobster Institute.Google Scholar
  89. Lavalli, K. L. & Spanier, E. 2007. In: Lavalli, K. L. & Spanier, E. (ed). The biology and fisheries of the slipper lobster. Vol. 17. CRC press.Google Scholar
  90. Lavery, S. D., Farhadi, A., Farahmand, H., Chan, T. Y., Azhdehakoshpour, A., Thakur, V., et al. (2014). Evolutionary Divergence of Geographic Subspecies within the Scalloped Spiny Lobster Panulirus homarus (Linnaeus 1758). PLoS ONE, 9(6), e97247.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Liang, H. (2012). Complete mitochondrial genome of the ornate rock lobster Panulirus ornatus (Crustacea: Decapoda). African Journal of Biotechnology, 11(80), 14519–14528.Google Scholar
  92. Liu, Y., & Cui, Z. (2011). Complete mitochondrial genome of the Chinese spiny lobster Panulirus stimpsoni (Crustacea: Decapoda): genome characterization and phylogenetic considerations. Molecular Biology Reports, 38(1), 403–410.PubMedCrossRefGoogle Scholar
  93. Mallet, J., & Willmort, K. (2003). Taxonomy: renaissance or Tower of Babel? Trends Ecol. Evolution, 18, 57–59.Google Scholar
  94. Matthee, C. A., Cockcroft, A. C., Gopal, K., & von der Heyden, S. (2008). Mitochondrial DNA variation of the west-coast rock lobster, Jasus lalandii: Marked genetic diversity differences among sampling sites. Marine and Freshwater Research, 58(12), 1130–1135.CrossRefGoogle Scholar
  95. Matz, M. V., & Nielsen, R. (2005). A likelihood ratio test for species membership based on DNA sequence data. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1462), 1969–1974.PubMedPubMedCentralCrossRefGoogle Scholar
  96. McWilliam, P. S. (1995). Evolution in the phyllosoma and puerulus phases of the spiny lobster genus Panulirus White. Journal of Crustacean Biology, 15, 542–557.CrossRefGoogle Scholar
  97. Mikami, S., & Kuballa, A. V. (2007). Factors important in larval and postlarval molting, growth and rearing. In K. L. Lavalli & E. Spanier (Eds.), The Biology and Fisheries of the Slipper Lobster (pp. 91–110). Boca Raton: CRC Press.CrossRefGoogle Scholar
  98. Modayil, M. J. & Pillai, N. G. K. (2007). Status and perspectives in marine fisheries research in India. Central Marine Fisheries Research Institute.Google Scholar
  99. Morgan, E. M., Green, B. S., Murphy, N. P., & Strugnell, J. M. (2013). Investigation of genetic structure between deep and shallow populations of the southern rock lobster, Jasus edwardsii in Tasmania, Australia. PloS One, 8(10), e77978.PubMedPubMedCentralCrossRefGoogle Scholar
  100. MPEDA. (2009). Statistics of marine products 2009. The Marine Exports Development Authority (Government of India, Ministry of Commerce and Industry), Kochi. pp: 25, 59Google Scholar
  101. Naro-Maciel, E., Reid, B., Holmes, K. E., Brumbaugh, D. R., Martin, M., & DeSalle, R. (2011). Mitochondrial DNA sequence variation in spiny lobsters: population expansion, panmixia, and divergence. Marine Biology, 158(9), 2027–2041.CrossRefGoogle Scholar
  102. O’Rorke, R., Lavery, S. D., Wang, M., Nodder, S. D., & Jeffs, A. G. (2014). Determining the diet of larvae of the red rock lobster (Jasus edwardsii) using high-throughput DNA sequencing techniques. Marine Biology, 161(3), 551–563.CrossRefGoogle Scholar
  103. O'Rorke, R., Lavery, S., Chow, S., Takeyama, H., Tsai, P., Beckley, L. E., & Jeffs, A. G. (2012). Determining the diet of larvae of western rock lobster (Panulirus cygnus) using high-throughput DNA sequencing techniques. PLoS One, 7(8), e42757.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Ovenden, J. R., Booth, J. D., & Smolenski, A. J. (1997). Mitochondrial DNA phylogeny of red and green rock lobsters (genus Jasus). Marine and Freshwater Research, 48(8), 1131–1136.CrossRefGoogle Scholar
  105. Palero, F., Abelló, P., Macpherson, E., Gristina, M., & Pascual, M. (2008). Phylogeography of the European spiny lobster (Palinurus elephas): Influence of current oceanographical features and historical processes. Molecular Phylogenetics and Evolution, 48(2), 708–717.PubMedCrossRefGoogle Scholar
  106. Palero, F., Crandall, K. A., Abelló, P., Macpherson, E., & Pascual, M. (2009a). Phylogenetic relationships between spiny, slipper and coral lobsters (Crustacea, Decapoda, Achelata). Molecular Phylogenetics and Evolution, 50(1), 152–162.CrossRefGoogle Scholar
  107. Palero, F., Lopes, J., Abelló, P., Macpherson, E., Pascual, M., & Beaumont, M. (2009b). Rapid radiation in spiny lobsters (Palinurus spp) as revealed by classic and ABC methods using mtDNA and microsatellite data. BMC Evolutionary Biology, 9(1), 263.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Pampoulie, C., Skirnisdottir, S., Hauksdottir, S., Olafsson, K., Eiríksson, H., Chosson, V., & Hjorleifsdottir, S. (2011). A pilot genetic study reveals the absence of spatial genetic structure in Norway lobster (Nephrops norvegicus) on fishing grounds in Icelandic waters. ICES Journal of Marine Science, 68(1), 20–25.CrossRefGoogle Scholar
  109. Park, S. Y., Park, J. S., & Yoon, J. M. (2005). Genetic differences and variations in slipper lobster (Ibacus ciliatus) and deep sea lobster (Puerulus sewelli) determined by RAPD analysis. Gene and Genomics, 27(4), 307–317.Google Scholar
  110. Patek, S. N., & Oakley, T. H. (2003). Comparative tests of evolutionary trade-offs in a palinurid lobster acoustic system. Evolution, 57(9), 2082–2100.PubMedCrossRefGoogle Scholar
  111. Pollock, D. E. (1990). Palaeoceanography and speciation in the spiny lobster genus Jasus. Bulletin of Marine Science, 46(2), 387–405.Google Scholar
  112. Porobić, J., Canales-Aguirre, C. B., Ernst, B., Galleguillos, R., & Hernández, C. E. (2013). Biogeography and historical demography of the juan fernández rock lobster, Jasus frontalis (Milne Edwards, 1837). The Journal of Heredity, 104(2), 223–233.PubMedCrossRefGoogle Scholar
  113. Porter, M. L., Pérez-Losada, M., & Crandall, K. A. (2005). Model-based multi-locus estimation of decapod phylogeny and divergence times. Molecular Phylogenetics and Evolution, 37(2), 355–369.PubMedCrossRefGoogle Scholar
  114. Ptacek, M. B., Sarver, S. K., Childress, M. J., & Herrnkind, W. F. (2001). Molecular phylogeny of the spiny lobster genus Panulirus (Decapoda: Palinuridae). Marine and Freshwater Research, 52(8), 1037–1047.CrossRefGoogle Scholar
  115. Radhakrishnan, E. V., Deshmukh, V. D., Manisseri, M. K., Rajamani, M., Kizhakudan, J. K., & Thangaraja, R. (2005). Status of the major lobster fisheries in India. New Zealand Journal of Marine and Freshwater Research, 39(3), 723–732.CrossRefGoogle Scholar
  116. Radhakrishnan, E. V., Manisseri, M. K., & Deshmukh, V. D. (2007). Biology and Fishery of the Slipper Lobster, Thenus orientalis, in India. In The Biology and Fisheries of the Slipper Lobster (pp. 309–324). Boca Raton: CRC press.CrossRefGoogle Scholar
  117. Ratnasingham, S., & Hebert, P. D. (2007). BOLD: The Barcode of Life Data System. Molecular Ecology Notes, 7(3), 355–364. (http://www. barcodinglife. org).PubMedPubMedCentralCrossRefGoogle Scholar
  118. Ravago, R. G., & Juinio-Meñez, M. A. (2002). Phylogenetic position of the striped-legged forms of Panulirus longipes (A. Milne-Edwards, 1868) (Decapoda, Palinuridae) inferred from mitochondrial DNA sequences. Crustaceana, 75, 1047–1059.CrossRefGoogle Scholar
  119. Reddy, M. M., Macdonald, A. H., Groeneveld, J. C., & Schleyer, M. H. (2014). Phylogeography of the scalloped spiny-lobster Panulirus homarus rubellus in the southwest Indian Ocean. Journal of Crustacean Biology, 34(6), 773–781.CrossRefGoogle Scholar
  120. Reiss, H., Hoarau, G., Dickey-Collas, M., & Wolff, W. J. (2009). Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish and Fisheries, 10, 361–395.CrossRefGoogle Scholar
  121. Rejinie Mon, T. R., Joseph, M. V., & Huxley, V. A. J. (2011). 18S rRNA Gene Polymorphisms of Panulirus homarus Populations from Different Geographic Regions of Peninsular India. Journal of Theoretical and Experimental Biology, 8(1 & 2), 85–93.Google Scholar
  122. Rodríguez-Rey, G. T., Cunha, H. A., Lazoski, C., & Solé-Cava, A. M. (2013). Polymorphic microsatellite loci from Brazilian and Hooded slipper lobsters (Scyllarides brasiliensis and S. deceptor), and cross-amplification in other scyllarids. Conservation Genetics Resources, 5(4), 985–988.CrossRefGoogle Scholar
  123. Rodríguez-Rey, G. T., Solé-Cava, A. M., & Lazoski, C. (2014). Genetic homogeneity and historical expansions of the slipper lobster, Scyllarides brasiliensis, in the south-west Atlantic. Marine and Freshwater Research, 65(1), 59–69.CrossRefGoogle Scholar
  124. Ruzzante, D. E., Taggart, C. T., Cook, D., & Goddard, S. (1996). Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua) off Newfoundland: microsatellite DNA variation and antifreeze level. Canadian Journal of Fisheries and Aquatic Sciences, 53(3), 634–645.CrossRefGoogle Scholar
  125. Salvadori, S., Coluccia, E., Deidda, F., Cau, A., Cannas, R., & Deiana, A. M. (2012). Comparative cytogenetics in four species of Palinuridae: B chromosomes, ribosomal genes and telomeric sequences. Genetica, 140(10–12), 429–437.PubMedCrossRefGoogle Scholar
  126. Santos, M. F., Souza, I. G., Gomes, S. O., Silva, G. R., Bentzen, P., & Diniz, F. M. (2018). Isolation and characterization of microsatellite markers in the spiny lobster, Panulirus echinatus Smith, 1869 (Decapoda: Palinuridae) by Illumina MiSeq sequencing. Journal of Genetics (97), Online Resources, pp e25–e30Google Scholar
  127. Scholtz, G., & Richter, S. (1995). Phylogenetic systematics of the reptantian Decapoda (Crustacea, Malacostraca). Zoological Journal of the Linnean Society, 113(3), 289–328.CrossRefGoogle Scholar
  128. Seeb, L. W., Seeb, J. E., & Polovina, J. J. (1990). Genetic variation in highly exploited spiny lobster Panulirus marginatus populations from the Hawaiian Archipelago. Fishery Bulletin, 88(71), 3–18.Google Scholar
  129. Sekiguchi, H., & Inoue, N. (2010). Larval recruitment and fisheries of the spiny lobster Panulirus japonicus coupling with the Kuroshio subgyre circulation in the western North Pacific: A review. Journal of the Marine Biological Association of India, 52, 195–207.Google Scholar
  130. Senevirathna, J. & Munasinghe, D. (2014). Genetic diversity and population structure of Panulirus homarus populations of southern Sri Lanka and South India revealed by the mitochondrial COI gene region. International Conference on Food, Biological and Medical Sciences (FBMS-2014) Jan. 28–29, 2014 Bangkok (Thailand).  https://doi.org/10.15242/IICBE.C0114541
  131. Senevirathna, J. D. M., Munasinghe, D. H. N., & Mather, P. B. (2016). Assessment of Genetic Structure in Wild Populations of Panulirus homarus (Linnaeus, 1758) across the South Coast of Sri Lanka Inferred from Mitochondrial DNA Sequences. International Journal of Marine Science, 6(6), 1–9.Google Scholar
  132. Shaklee, J. B. (1983). The utilization of isozymes as gene markers in fisheries management and conservation. Isozymes: Current Topics in Biological and Medical Research II. pp 213–247.Google Scholar
  133. Shen, H., Braband, A., & Scholtz, G. (2013). Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Molecular Phylogenetics and Evolution, 66(3), 776–789.PubMedCrossRefGoogle Scholar
  134. Silberman, J. D., & Walsh, P. J. (1992). Species identification of spiny lobster phyllosoma larvae via ribosomal DNA analysis. Molecular Marine Biology and Biotechnology, 1(3), 195–205.PubMedGoogle Scholar
  135. Singh, S. P., Groeneveld, J. C., Al-Marzouqi, A., & Willows-Munro, S. (2017). A molecular phylogeny of the spiny lobster Panulirus homarus highlights a separately evolving lineage from the Southwest Indian Ocean. PeerJ, 5, e3356.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Souza, C. A., Murphy, N., Villacorta-Rath, C., Woodings, L. N., Ilyushkina, I., Hernandez, C. E., & Strugnell, J. M. (2017). Efficiency of ddRAD target enriched sequencing across spiny rock lobster species (Palinuridae: Jasus). Scientific Reports, 7(1), 6781.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Stamatis, C., Triantafyllidis, A., Moutou, K. A., & Mamuris, Z. (2004). Mitochondrial DNA variation in Northeast Atlantic and Mediterranean populations of Norway lobster, Nephrops norvegicus. Molecular Ecology, 13(6), 1377–1390.PubMedCrossRefGoogle Scholar
  138. Stamatis, C., Triantafyllidis, A., Moutou, K. A., & Mamuris, Z. (2006). Allozymic variation in Northeast Atlantic and Mediterranean populations of Norway lobster, Nephrops norvegicus. ICES Journal of Marine Science, 63(5), 875–882.CrossRefGoogle Scholar
  139. Streiff, R., Mira, S., Castro, M., & Cancela, M. L. (2004). Multiple paternity in Norway lobster (Nephrops norvegicus L.) assessed with microsatellite markers. Marine Biotechnology, 6(1), 60–66.PubMedCrossRefGoogle Scholar
  140. Suresh, P., Sasireka, G., & Karthikeyan, K. A. M. (2012). Molecular insights into the phylogenetics of spiny lobsters of Gulf of Mannar marine biosphere reserve based on 28 S rDNA. Indian Journal of Biotechnology, 11(2), 182–186.Google Scholar
  141. Suzuki, N., Murakami, K., Takeyama, H., & Chow, S. (2006). Molecular attempt to identify prey organisms of lobster phyllosoma larvae. Fisheries Science, 72(2), 342–349.CrossRefGoogle Scholar
  142. Suzuki, N., Hoshino, K., Murakami, K., Takeyama, H., & Chow, S. (2008). Molecular diet analysis of phyllosoma larvae of the Japanese spiny lobster Panulirus japonicus (Decapoda: Crustacea). Marine Biotechnology, 10(1), 49–55.PubMedCrossRefGoogle Scholar
  143. Tan, M. H., Gan, H. M., Lee, Y. P., & Austin, C. M. (2016). The complete mitogenome of the Morton Bay bug Thenus orientalis (Lund, 1793) (Crustacea: Decapoda: Scyllaridae) from a cooked sample and a new mitogenome order for the Decapoda. Mitochondrial DNA Part A, 27(2), 1277–1278.CrossRefGoogle Scholar
  144. Thomas, L., & Bell, J. J. (2012). Characterization of polymorphic microsatellite markers for the red rock lobster, Jasus edwardsii (Hutton 1875). Conservation Genetics Resources, 4(2), 319–321.CrossRefGoogle Scholar
  145. Timbó, R. V., Togawa, R. C., Costa, M. M., Andow, D. A., & Paula, D. P. (2017). Mitogenome sequence accuracy using different elucidation methods. PLoS One, 12(6), e0179971.CrossRefGoogle Scholar
  146. Tolley, K. A., Groeneveld, J. C., Gopal, K., & Matthee, C. A. (2005). Mitochondrial DNA panmixia in spiny lobster Palinurus gilchristi suggests a population expansion. Marine Ecology Progress Series, 297, 225–231.CrossRefGoogle Scholar
  147. Toon, A., Finley, M., Staples, J., & Crandall, K. A. (2009). Decapod phylogenetics and molecular evolution. Decapod Crustacean Phylogenetics. Crustacean Issues., 18, 15–29.CrossRefGoogle Scholar
  148. Tourinho, J. L., Solé-Cava, A. M., & Lazoski, C. (2012). Cryptic species within the commercially most important lobster in the tropical Atlantic, the spiny lobster Panulirus argus. Marine Biology, 159(9), 1897–1906.CrossRefGoogle Scholar
  149. Triantafyllidis, A., Apostolidis, A. P., Katsares, V., Kelly, E., Mercer, J., Hughes, M., & Triantaphyllidis, C. (2005). Mitochondrial DNA variation in the European lobster (Homarus gammarus) throughout the range. Marine Biology, 146(2), 223–235.CrossRefGoogle Scholar
  150. Truelove, N. K., Griffiths, S., Ley-Cooper, K., Azueta, J., Majil, I., Box, S. J., & Preziosi, R. F. (2015a). Genetic evidence from the spiny lobster fishery supports international cooperation among Central American marine protected areas. Conservation Genetics, 16(2), 347–358.CrossRefGoogle Scholar
  151. Truelove, N. K., Ley-Cooper, K., Segura-García, I., Briones-Fourzán, P., Lozano-Álvarez, E., Phillips, B. F., Box, S. J., & Preziosi, R. F. (2015b). Genetic analysis reveals temporal population structure in Caribbean spiny lobster (Panulirus argus) within marine protected areas in Mexico. Fisheries Research, 172, 44–49.CrossRefGoogle Scholar
  152. Truelove, N., Behringer, D. C., Butler, M. J., IV, & Preziosi, R. F. (2016). Isolation and characterization of eight polymorphic microsatellites for the spotted spiny lobster, Panulirus guttatus. PeerJ, 4, e1467.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tsang, L. M., Ma, K. Y., Ahyong, S. T., Chan, T. Y., & Chu, K. H. (2008). Phylogeny of Decapoda using two nuclear protein-coding genes: origin and evolution of the Reptantia. Molecular Phylogenetics and Evolution, 48(1), 359–368.CrossRefGoogle Scholar
  154. Tsang, L. M., Chan, T. Y., Cheung, M. K., & Chu, K. H. (2009). Molecular evidence for the Southern Hemisphere origin and deep sea diversification of spiny lobsters (Crustacea: Decapoda: Palinuridae). Molecular Phylogenetics and Evolution, 51(2), 304–311.CrossRefGoogle Scholar
  155. Tshudy, D., Robles, R., Chan, T. Y., Chu, K. H., Ho, K & Ahyong, S. (2009). Phylogeny of marine clawed lobsters (Families Nephropidae Dana, 1852 and Thaumastochelidae Bate, 1888) based on mitochondrial genes. In Martin J. W., Crandall K.A & Felder D.L. (ed.). Decapod crustacean phylogenetics, pp 357–368.Google Scholar
  156. Tsoi, K. H., Chan, T. Y., & Chu, K. H. (2011). Phylogenetic and biogeographic analysis of the spear lobsters Linuparus (Decapoda: Palinuridae), with the description of a new species. Zoologischer Anzeiger, 250(4), 302–315.CrossRefGoogle Scholar
  157. Ulrich, I., Muller, J., Schutt, C., & Buchholz, F. (2001). A study of population genetics in the European lobster, Homarus gammarus (Decapoda, Nephropidae). Crustaceana, 74(9), 825–837.CrossRefGoogle Scholar
  158. Vijayakumaran, M., & Radhakrishnan, E. V. (2011). Slipper lobsters. In R. K. Fotedar & B. F. Phillips (Eds.), Recent advances and new species in aquaculture (pp. 85–114). Wiley-Blackwell.Google Scholar
  159. Villacorta-Rath, C., Ilyushkina, I., Strugnell, J. M., et al. (2016). Outlier SNPs enable food traceability of the southern rock lobster, Jasus edwardsii. Marine Biology, 163(11), 223.CrossRefGoogle Scholar
  160. Villacorta-Rath, C., Souza, C. A., Murphy, N. P., Green, B. S., Gardner, C., & Strugnell, J. M. (2018). Temporal genetic patterns of diversity and structure evidence chaotic genetic patchiness in a spiny lobster. Molecular Ecology, 27(1), 54–65.PubMedCrossRefGoogle Scholar
  161. Von der Heyden, S., Groeneveld, J. C., & Matthee, C. A. (2007). Long current to nowhere? – Genetic connectivity of Jasus tristani populations in the southern Atlantic Ocean. African Journal of Marine Science, 29(3), 491–497.CrossRefGoogle Scholar
  162. Wakabayashi, K., Yang, C. H., Shy, J. Y., He, C. H., & Chan, T. Y. (2017). Correct identification and redescription of the larval stages and early juveniles of the slipper lobster Eduarctus martensii (Pfeffer, 1881) (Decapoda: Scyllaridae). Journal of Crustacean Biology, 37(2), 204–219.CrossRefGoogle Scholar
  163. Watson, H. V., McKeown, N. J., Coscia, I., Wootton, E., & Ironside, J. E. (2016). Population genetic structure of the European lobster (Homarus gammarus) in the Irish Sea and implications for the effectiveness of the first British marine protected area. Fisheries Research, 183, 287–293.CrossRefGoogle Scholar
  164. Webber, W. R., & Booth, J. D. (2007). Taxonomy and evolution. In K. L. Lavalli & E. Spanier (Eds.), The biology and fisheries of the Slipper Lobster (pp. 26–52). Boca Raton: CRC press.Google Scholar
  165. Wongruenpibool, S., & Denduangboripant, J. (2013). Genetic diversity of purple-legged shovel-nosed lobster Thenus unimaculatus in Thailand. Genomics and Genetics, 6(1), 64–70.Google Scholar
  166. Xiao, B. H., Zhang, W., Yao, W., Liu, C. W., & Liu, L. (2017). Analysis of the complete mitochondrial genome sequence of Palinura homarus. Mitochondrial DNA Part B, 2(1), 60–61.CrossRefGoogle Scholar
  167. Yamauchi, M. M., Miya, M. U., & Nishida, M. (2002). Complete mitochondrial DNA sequence of the Japanese spiny lobster, Panulirus japonicus (Crustacea: Decapoda). Gene, 295(1), 89–96.PubMedCrossRefPubMedCentralGoogle Scholar
  168. Yang, C. H., Bracken-Grissom, H., Kim, D., Crandall, K. A., & Chan, T. Y. (2012). Phylogenetic relationships, character evolution, and taxonomic implications within the slipper lobsters (Crustacea: Decapoda: Scyllaridae). Molecular Phylogenetics and Evolution, 62(1), 237–250.CrossRefGoogle Scholar
  169. Yellapu, B., Jeffs, A., Battaglene, S., Lavery, S. D., & Hauser, L. (2016). Population subdivision in the tropical spiny lobster Panulirus ornatus throughout its Indo-West Pacific distribution. ICES Journal of Marine Science, 74(3), 759–768.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jeena N. S
    • 1
    Email author
  • Gopalakrishnan A
    • 1
  • E. V. Radhakrishnan
    • 1
  • Jena J. K
    • 2
  1. 1.ICAR-Central Marine Fisheries Research InstituteCochinIndia
  2. 2.Indian Council of Agricultural ResearchNew DelhiIndia

Personalised recommendations