Culture of Slipper Lobster Larvae (Decapoda: Achelata: Scyllaridae) Fed Jellyfish as Food

  • Kaori WakabayashiEmail author
  • Yuji Tanaka
  • Bruce F. Phillips


Planktonic larvae of slipper and spiny lobsters, so-called phyllosoma, are known to be associated with various kinds of gelatinous zooplankton such as jellyfish and salps in the wild. Phyllosoma larvae likely utilise the gelatinous zooplankton for food, transport, and protection. Based on knowledge of the natural association behaviour of phyllosoma larvae with gelatinous zooplankton, a seed production technique for lobsters using gelatinous zooplankton as food can be established. In tank conditions, the complete larval development from newly hatched phyllosoma to juvenile stage has been achieved with cnidarian jellyfish as the sole food in three slipper lobster species, Ibacus novemdentatus, I. ciliatus, and Thenus australiensis. Understanding of the biophysical and biochemical compositions of jellyfish and their effect on growth and survival of phyllosoma larvae may result in new knowledge and techniques for successful achievement of mass seed production, as well as development of a sustainable jelly-like artificial diet for phyllosoma larvae.


Phyllosoma larvae Gelatinous zooplankton Jellyfish riding behaviour Larviculture 



The authors express their gratitude to the underwater photographers Mr. Hideki Abe, Mr. Yusuke Yoshino, Mr. Tsutomu Sasagawa, Ms. Miki Sasagawa, and Ms. Kumiko Maki who always provided us their observations with wonderful photographs. The gratitude also goes to Dr. Wanting Cheng and Mr. Ryuichi Sugimoto who agreed with providing unpublished data in this chapter. A special acknowledgement to the late Dr. Jiro Kittaka who was encouraging the authors to seek a possibility of gelatinous zooplankton as food for slipper and spiny lobster phyllosomas.


  1. Arai, M. N. (1988). Interactions of fish and pelagic coelenterates. Canadian Journal of Zoology, 66, 1913–1927.CrossRefGoogle Scholar
  2. Arai, M. N., Welch, D. W., Dunsmuir, A. L., Jacobs, M. C., & Ladouceur, A. R. (2003). Digestion of pelagic Ctenophora and Cnidaria by fish. Canadian Journal of Fisheries and Aquatic Sciences, 60, 825–829.CrossRefGoogle Scholar
  3. Ates, R. M. L. (1988). Medusivorous fishes, a review. Zoologische Mededelingen Leiden, 62, 29–42.Google Scholar
  4. Ates, R., Lindsay, D. J., & Sekiguchi, H. (2007). First record of an association between a phyllosoma larva and a prayid siphonophore. Plankton & Benthos Research, 2, 67–69.CrossRefGoogle Scholar
  5. Bailey, K. N., & Habib, G. (1982). Food of incidental fish species taken in the purse-seine skipjack fishery, 1976–1981. Fisheries Research Divison Occasional Publication Data Series, 6, 1–24.Google Scholar
  6. Barnett, B. M., Hartwick, R. F., & Milward, N. E. (1986). Descriptions of the nisto stage of Scyllarus demani Holthuis, two unidentified Scyllarus species, and the juvenile of Scyllarus martensii Pfeffer (Crustacea: Decapoda: Scyllaridae), reared in the laboratory; and behavioural observations of the nistos of S. demani, S. martensii and Thenus orientalis (Lund). Australian Journal of Marine & Freshwater Research, 37, 595–608.CrossRefGoogle Scholar
  7. Booth, J. D., Webber, W. R., Sekiguchi, H., & Coutures, E. (2005). Diverse larval recruitment strategies within the Scyllaridae. New Zealand Journal of Marine & Freshwater Research., 39, 581–592.CrossRefGoogle Scholar
  8. Brusca, R. C., Moore, W., & Shuster, S. M. (2016). Invertebrates (3rd ed., p. 1104). Sunderland: Sinauer Associates.Google Scholar
  9. Burton, T. E., & Davie, P. J. F. (2007). A revision of the short-nosed lobsters of the genus Thenus (Crustacea: Decapoda: Scyllaridae), with descriptions of three new species. Zootaxa, 1429, 1–38.CrossRefGoogle Scholar
  10. Cahu, C. (1999). Nutrition and feeding of penaeid shrimp larvae. In J. Guillaume, S. Kaushik, P. Bergot, & R. Métailler (Eds.), Nutrition and feeding of fish and crustaceans (pp. 253–263). Chichester: Paris Publishing.Google Scholar
  11. Cardona, L., Álvarez de Quevedo, I., Borrell, A., & Aguilar, A. (2012). Massive consumption of gelatinous plankton by mediterranean apex predators. PLoS One, 7, e31329. Scholar
  12. Chan, T. Y. (2010). Annotated checklist of the world’s marine lobsters (Crustacea: Decapoda: Astacidea, Glypheidea, Achelata, Polychelida). The Raffles Bulletin of Zoology, 23, 153–181.Google Scholar
  13. Connell, S. C., O’Rorke, R., Jeffs, A. G., & Lavery, S. D. (2014). DNA identification of the phyllosoma diet of Jasus edwardsii and Scyllarus sp. Z. New Zealand Journal of Marine and Freshwater Research, 48, 416–429.CrossRefGoogle Scholar
  14. Cox, S. L., & Bruce, M. P. (2003). Feeding behaviour and associated sensory mechanisms of stage I–III phyllosoma of Jasus edwardsii and Jasus verreauxi. Journal of the Marine Biological Association of the United Kingdom, 83, 465–468.CrossRefGoogle Scholar
  15. Fisher, W. S., Nilson, E. H., Steenbergen, J. F., & Lightner, D. V. (1978). Microbial diseases of cultured lobsters: A review. Aquaculture, 14, 115–141.CrossRefGoogle Scholar
  16. Forster, G. R. (1953). Peritrophic membranes in the Caridea (Crustacea Decapoda). Journal of the Marine Biological Association of the United Kingdom, 32, 315–318.CrossRefGoogle Scholar
  17. Francis, D. S., Salmon, M. L., Kenway, M. J., & Hall, M. R. (2014). Palinurid lobster aquaculture: Nutritional progress and considerations for successful larval rearing. Reviews in Aquaculture, 6, 180–203.Google Scholar
  18. Fukuda, Y., & Naganuma, T. (2001). Potential dietary effects on the fatty acid composition of the common jellyfish Aurelia aurita. Marine Biology, 138, 1029–1035.CrossRefGoogle Scholar
  19. Goldstein, J. S., & Nelson, B. (2011). Application of a gelatinous zooplankton tank for the mass production of larval Caribbean spiny lobster, Panulirus argus. Aquatic Living Resources, 24, 45–51.CrossRefGoogle Scholar
  20. Goulden, E. F., Hall, M. R., Bourne, D. G., Pereg, L. L., & Høj, L. (2012). Pathogenicity and infection cycle of Vibrio owensii in larviculture of the ornate spiny lobster (Panulirus ornatus). Applied and Environmental Microbiology, 78, 2841–2849.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Greer, A. T., Briseno-Avena, C., Deary, A. L., Cowen, R. K., Hernandez, F. J., & Graham, W. M. (2017). Associations between lobster phyllosoma and gelatinous zooplankton in relation to oceanographic properties in the northern Gulf of Mexico. Fisheries Oceanography, 26, 693–704.CrossRefGoogle Scholar
  22. Greve, W. (1968). The “planktonkreisel”, a new device for culturing zooplankton. Marine Biology, 1, 201–203.CrossRefGoogle Scholar
  23. Greve, W. (1970). Cultivation experiments on North Sea ctenophores. Helgoländer Wissenschaftliche Meeresuntersuchungen, 20, 304–317.CrossRefGoogle Scholar
  24. Guillaume, J. (1997). Protein and amino acids. In L. R. D’Abramo, D. E. Conklin, & D. M. Akiyama (Eds.), Crustacean nutrition (pp. 26–50). Baton Rouge: The World Aquaculture Society.Google Scholar
  25. Herrnkind, W., Halusky, J., & Kanciruk, P. (1976). A further note on phyllosoma larvae associated with medusae. Bulletin of Marine Science, 26, 110–112.Google Scholar
  26. Higa, T., Fujita, Y., & Shokita, S. (2005). Complete larval development of a scyllarine lobster, Galearctus kitanoviriosus (Harada, 1962) (Decapoda: Scyllaridae: Scyllarinae), reared under laboratory conditions. Crustacean Research, 34, 1–26.CrossRefGoogle Scholar
  27. Horita, T. (2007). A challenge toward rearing, exhibiting spiny lobster larvae. In G. Nishi & T. Saruwatari (Eds.), Work at aquariums (pp. 84–98). Hatano: Tokai University Press.Google Scholar
  28. Ianniello, L., & Mears, S. (2018). Blackwater creatures. 170 pp. Ianniello & Mears. USA.Google Scholar
  29. Ishii, H., Morishita, A., & Yamaguchi, Y. (2016). Productive ecology and utilization as food of hydrozoan jellyfish Eutonia indicans. In Abstract book of the 5th international jellyfish bloom symposium (p. 117). Barcelona: L’Aquàrium de Barcelona.Google Scholar
  30. Jeffs, A. (2007). Revealing the natural diet of the phyllosoma larvae of spiny lobster. Bulletin of Fisheries Research Agency, 20, 9–13.Google Scholar
  31. Jeffs, A. G., Willmott, M. E., & Wells, R. M. G. (1999). The use of energy stores in the puerulus of the spiny lobster Jasus edwardsii across the continental shelf of New Zealand. Comparative Biochemistry and Physiology. A, Comparative Physiology, 123, 351–357.CrossRefGoogle Scholar
  32. Jeffs, A. G., Nichols, P. D., & Bruce, M. P. (2001). Lipid reserves used by pueruli of the spiny lobster Jasus edwardsii in crossing the continental shelf of New Zealand. Comparative Biochemistry and Physiology. A, Comparative Physiology, 129, 305–311.CrossRefGoogle Scholar
  33. Jouiaei, M., Yanagihara, A. A., Madio, B., Nevalainen, T. J., Alewood, P. F., & Fry, B. G. (2015). Ancient venom systems: A review on cnidaria toxins. Toxins, 7, 2251–2271.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kamio, M., Furukawa, D., Wakabayashi, K., Hiei, K., Yano, H., Sato, H., Yoshie-Stark, Y., Akiba, T., & Tanaka, Y. (2015). Grooming behavior by elongated third maxillipeds of phyllosoma larvae of the smooth fan lobster riding on jellyfishes. Journal of Experimental Marine Biology and Ecology, 463, 115–124.CrossRefGoogle Scholar
  35. Kamio, M., Wakabayashi, K., Nagai, H., & Tanaka, Y. (2016). Phyllosomas of smooth fan lobsters (Ibacus novemdentatus) encase jellyfish cnidae in peritrophic membranes in their feces. Plankton & Benthos Research, 11, 100–104.CrossRefGoogle Scholar
  36. Kittaka, J. (1997). Application of ecosystem culture method for complete development of phyllosomas of spiny lobster. Aquaculture, 115, 319–331.CrossRefGoogle Scholar
  37. Kittaka, J. (2000). Culture of larval spiny lobsters. In B. F. Phillips & J. Kittaka (Eds.), Spiny lobsters: Fisheries and culture (pp. 508–532). Oxford: Fishing News Books.CrossRefGoogle Scholar
  38. Kittaka, J. (2005). Jellyfish as food organisms to culture phyllosoma larva. Bulletin of the Plankton Society of Japan, 52, 91–99.Google Scholar
  39. Kizhakudan, J. K., & Krishnamoorthi, S. (2014). Complete larval development of Thenus unimaculatus Burton & Davie, 2007 (Decapoda, Scyllaridae). Crustaceana, 87, 570–584.CrossRefGoogle Scholar
  40. Kumar, T. S., Vijayakumaran, M., Murugan, T. S., Jha, D. K., Sreeraj, G., & Muthukumar, S. (2009). Captive breeding and larval development of the scyllarine lobster Petrarctus rugosus. New Zealand Journal of Marine and Freshwater Research, 43, 101–112.CrossRefGoogle Scholar
  41. Lavalii, K. L., & Spanier, E. (2007). Introduction to the biology and fisheries of slipper lobsters. In K. L. Lavalli & E. Spanier (Eds.), The biology and fisheries of the slipper lobster (pp. 3–21). Boca Raton: CRC Press.CrossRefGoogle Scholar
  42. Madin, L. P., & Harbison, G. R. (2001). Gelatinous zooplankton. In S. A. Thorpe & K. K. Turekian (Eds.), Encyclopedia of ocean sciences (Vol. 2, pp. 1120–1130). Amsterdam: Elsevier.CrossRefGoogle Scholar
  43. Mańko, M. K., Słomska, A. W., & Jażdżewski, K. (2017). Siphonophora of the Gulf of Aqaba (red sea) and their associations with crustaceans. Marine Biology Research, 13, 480–485.CrossRefGoogle Scholar
  44. Masuda, R., Yamashita, Y., & Matsuyama, M. (2008). Jack mackerel Trachurus japonicus juveniles use jellyfish for predator avoidance and as a prey collector. Fisheries Science, 74, 276–284.CrossRefGoogle Scholar
  45. Matsuda, H. (2010). Ise-ebi wo tsukutu (178 pp). Seizan, Tokyo. (In Japanese).Google Scholar
  46. Matsuda, H., & Takenouchi, T. (2005). New tank design for larval culture of Japanese spiny lobster, Panulirus japonicus. New Zealand Journal of Marine and Freshwater Research, 39, 279–285.CrossRefGoogle Scholar
  47. Mikami, S., & Kuballa, A. V. (2004). Overview of lobster aquaculture research. In S. Kolkovski, J. Heine, & S. Clarke (Eds.), Proceedings of the second hatchery feeds and technology workshop (pp. 127–130). Sydney: Novotel Century Sydney.Google Scholar
  48. Mikami, S., & Kuballa, A. V. (2007). Factors important in larval and postlarval molting, growth, and rearing. In K. L. Lavalli & E. Spanier (Ed.), The biology and fisheries of the slipper lobster (pp. 91–110). CRC Press.Google Scholar
  49. Mikami, S., & Takashima, F. (1993). Development of the proventriculus in larvae of the slipper lobster, Ibacus ciliatus (Decapoda: Scyllaridae). Aquaculture, 116, 199–217.CrossRefGoogle Scholar
  50. Mikami, S., Greenwood, J. G., & Takashima, F. (1994). Functional morphology and cytology of the phyllosomal digestive system of Ibacus ciliatus and Panulirus japonicus (Decapoda, Scyllaridae and Palinuridae). Crustaceana, 67, 212–225.CrossRefGoogle Scholar
  51. Mitchell, J. R. (1971). Food preference, feeding mechanisms, and related behavior in phyllosoma larvae of the California spiny lobster, Panulirus interruptus (Randall) (110 pp). Master Thesis in San Diego State College.Google Scholar
  52. Murakami, K., Jinbo, T., & Hamasaki, K. (2007). Aspects of the technology of phyllosoma rearing and metamorphosis from phyllosoma to puerulus in the Japanese spiny lobster Panulirus japonicus reared in the laboratory. Bulletin of Fisheries Research Agency, 20, 59–67.Google Scholar
  53. Nelson, M. M., Phleger, C. F., Mooney, B. D., & Nichols, P. D. (2000). Lipids of gelatinous Antarctic zooplankton: Cnidaria and Ctenophora. Lipids, 35, 551–559.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Nishida, S., Quigley, B. D., Booth, J. D., Nemoto, T., & Kittaka, J. (1990). Comparative morphology of the mouthparts and foregut of the final-stage phyllosoma, puerulus, and postpuerulus of the rock lobster Jasus edwardsii (Decapoda: Palinuridae). Journal of Crustacean Biology, 10, 293–305.CrossRefGoogle Scholar
  55. O’Rorke, R., Lavery, S., Chow, S., Takeyama, H., Tsai, P., Beckley, L. E., Thompson, P. A., Waite, A. M., & Jeffs, A. G. (2012). Determining the diet of larvae of western rock lobster (Panulirus cygnus) using high-throughput DNA sequencing techniques. PLoS One, 7, e42757. Scholar
  56. Palero, F., Clark, P. F., & Guerao, G. (2014a). Achelata. In J. W. Martin, J. Olesen, & J. T. Høeg (Eds.), Atlas of Crustacean Larvae (pp. 272–278). Maryland: Johns Hopkins University Press.Google Scholar
  57. Palero, F., Guerao, G., Hall, M., Chan, T. Y., & Clark, P. F. (2014b). The ‘giant phyllosoma’ are larval stages of Parribacus antarcticus (Decapoda: Scyllaridae). Invertebrate Systematics, 28, 258–276.CrossRefGoogle Scholar
  58. Phillips, B. F., & Matsuda, H. (2011). A global review of spiny lobster aquaculture. In R. K. Fotedar & B. F. Phillips (Eds.), Recent advances and new species in aquaculture (pp. 22–84). West Sussex: Blackwell.CrossRefGoogle Scholar
  59. Phillips, B. F., & Sastry, A. N. (1980). Larval ecology. In J. S. Cobb & B. F. Phillips (Eds.), The biology and management of lobsters. II: Ecology and management (pp. 11–57). New York: Academic Press.Google Scholar
  60. Phillips, B. F., Jeffs, A. G., Melville-Smith, R., Chubb, C. F., Nelson, M. M., & Nichols, P. D. (2006). Changes in lipid and fatty acid composition of late larval and puerulus stages of the spiny lobster (Panulirus cygnus) across the continental shelf of Western Australia. Comparative Biochemistry and Physiology. B, 143, 219–228.CrossRefGoogle Scholar
  61. Phleger, C. F., Nelson, M. M., Mooney, B. D., Nichols, P. D., Ritar, A. J., Smith, G. G., Hart, P. R., & Jeffs, A. G. (2001). Lipids and nutrition of the southern rock lobster, Jasus edwardsii, from hatching to puerulus. Marine and Freshwater Research, 52, 1475–1486.CrossRefGoogle Scholar
  62. Purcell, J. E. (2012). Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annual Review of Marine Science, 4, 209–235.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Purcell, J. E., Uye, S., & Lo, W. T. (2007). Anthropogenic causes of jellyfish blooms and their direct consequences for humans: A review. Marine Ecology Progress Series, 350, 153–174.CrossRefGoogle Scholar
  64. Ritar, A. J. (2001). The experimental culture of phyllosoma larvae of southern rock lobster (Jasus edwardsii) in a flow-through system. Aquacultural Engineering, 24, 149–156.CrossRefGoogle Scholar
  65. Saunders, M. I., Thompson, P. A., Jeffs, A. G., Säwström, C., Sachlikidis, N., Beckley, L. E., & Waite, A. M. (2012). Fussy feeders: Phyllosoma larvae of the western rocklobster (Panulirus cygnus) demonstrate prey preference. PLoS One, 7, e36580. Scholar
  66. Sekiguchi, H., Booth, J. D., & Webber, W. R. (2007). Early life histories of slipper lobsters. In K. L. Lavalli & E. Spanier (Eds.), The biology and fisheries of the slipper lobster (pp. 69–90). Boca Raton: CRC Press.CrossRefGoogle Scholar
  67. Shojima, Y. (1963). Scyllarid phyllosomas’ habit of accompanying the jelly-fish (preliminary report). Bullettin of the Japanese Society of Scientific Fisheries, 29, 349–353.CrossRefGoogle Scholar
  68. Shojima, Y. (1973). The phyllosoma larvae of Palinura in the East China Sea and adjacent waters—I. Bulletin of Seikai Regulation Fisheries Research Laboratory, 43, 105–115. (In Japanese).Google Scholar
  69. Simon, C. J., Carter, C. G., & Battaglene, S. C. (2012). Development and function of the filter-press in spiny lobster, Sagmariasus verreauxi, phyllosoma. Aquaculture, 370–371, 68–75.CrossRefGoogle Scholar
  70. Sims, H. W., Jr., & Brown, C. L., Jr. (1968). A giant scyllarid phyllosoma larva taken north of Bermuda (Palinuridea). Crustaceana (Supplement), 2, 80–82.Google Scholar
  71. Sullivan, L. J., & Kremer, P. (2011). Gelatinous zooplankton and their trophic roles. In E. Wolanski & D. McLusky (Ed.), Treatise on estuarine and coastal science, Vol. 6, Trophic relationships of coastal and estuarine ecosystems (pp. 127–171). London: Academic Press.Google Scholar
  72. Suzuki, N., Murakami, K., Takeyama, H., & Chow, S. (2006). Molecular attempt to identify prey organisms of lobster phyllosoma larvae. Fisheries Science, 72, 342–349.CrossRefGoogle Scholar
  73. Suzuki, N., Murakami, K., Takeyama, H., & Chow, S. (2007). Eukaryotes from the hepatopancreas of lobster phyllosoma larvae. Bullettin of Fisheries Research Agency, 20, 1–7.Google Scholar
  74. Sverdrup, H.U., Johnson, M.W. & Fleming, R.H. 1947. The oceans: Their physics, chemistry, and general biology. 1087 pp. Prentice-Hall, Englewood Cliffs.Google Scholar
  75. Takahashi, M., & Saisho, T. (1978). The complete larval development of the scyllarid lobster, Ibacus ciliatus (von Siebold) and Ibacus novemdentatus Gibbes in the laboratory. Members Faculty of Fisheries Kagoshima University, 27, 305–353.Google Scholar
  76. Takeuchi, T. (2014). Progress on larval and juvenile nutrition to improve the quality and health of seawater fish: A review. Fisheries Science, 80, 389–403.CrossRefGoogle Scholar
  77. Thomas, L. R. (1963). Phyllosoma larvae associated with medusae. Nature, 198, 208.CrossRefGoogle Scholar
  78. Uye, S., Fujii, N., & Takeoka, H. (2003). Unusual aggregations of the scyphomedusa Aurelia aurita in coastal waters along western Shikoku, Japan. Plankton Biology and Ecology, 50, 17–21.Google Scholar
  79. Vijayakumaran, M., & Radhakrishnan, E. V. (2011). Slipper lobsters. In R. K. Fotedar & B. F. Phillips (Eds.), Recent advances and new species in aquaculture (pp. 85–114). West Sussex: Blackwell.CrossRefGoogle Scholar
  80. Wakabayashi, K., & Phillips, B. F. (2016). Morphological descriptions of laboratory reared larvae and post-larvae of the Australian shovel-nosed lobster Thenus australiensis Burton and Davie, 2007 (Decapoda, Scyllaridae). Crustaceana, 89, 97–117.CrossRefGoogle Scholar
  81. Wakabayashi, K., & Tanaka, Y. (2012). The jellyfish-rider: Phyllosoma larvae of spiny and slipper lobsters associated with jellyfish. TAXA, Proceedings of Japanese Society Systematic Zoology, 33, 5–12. (In Japanese).Google Scholar
  82. Wakabayashi, K., Sato, R., Hirai, A., Ishii, H., Akiba, T., & Tanaka, Y. (2012a). Predation by the phyllosoma larva of Ibacus novemdentatus on various kinds of venomous jellyfish. The Biological Bulletin, 222, 1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Wakabayashi, K., Sato, R., Ishii, H., Akiba, T., Nogata, Y., & Tanaka, Y. (2012b). Culture of phyllosomas of Ibacus novemdentatus (Decapoda: Scyllaridae) in a closed recirculating system using jellyfish as food. Aquaculture, 330–333, 162–166.CrossRefGoogle Scholar
  84. Wakabayashi, K., Matsumura, K., & Tanaka, Y. (2013). Consumption rates of jellyfish by phyllosoma larvae of the smooth fan lobster Ibacus novemdentatus. In Abstracts of aquaculture conference: To the next 40 years of sustainable global aquaculture. Palacio de Congresos de Canarias Convention Centre, Las Palmas de Gran Canaria. O6.5.Google Scholar
  85. Wakabayashi, K., Nagai, S., & Tanaka, Y. (2016a). The complete larval development of Ibacus ciliatus from hatching to the nisto and juvenile stages using jellyfish as the sole diet. Aquaculture, 450, 102–107.CrossRefGoogle Scholar
  86. Wakabayashi, K., Sato, H., Yoshie-Stark, Y., Ogushi, M., & Tanaka, Y. (2016b). Differences in the biochemical compositions of two dietary jellyfish species and their effects on the growth and survival of Ibacus novemdentatus phyllosomas. Aquaculture Nutrition, 22, 25–33.CrossRefGoogle Scholar
  87. Wakabayashi, K., Tanaka, Y., & Abe, H. (2017a). Field guide to marine plankton (Vol. 180). Tokyo: Bun-ichi. (In Japanese).Google Scholar
  88. Wakabayashi, K., Yang, C. H., Shy, J. Y., He, C. H., & Chan, T. Y. (2017b). Correct identification and redescription of the larval stages and early juveniles of the slipper lobster Eduarctus martensii (Pfeffer, 1881) (Decapoda: Scyllaridae). Journal of Crustacean Biology, 37, 204–219.CrossRefGoogle Scholar
  89. Wake, F., Izumimoto, M., Mikami, M., & Miura, H. (1974). On the bacteriostatic action by glycine. Research Bullettin of Obihiro University Series I, 9, 159–163.Google Scholar
  90. Wang, M., & Jeffs, A. G. (2014). Nutritional composition of potential zooplankton prey of spiny lobster larvae: A review. Reviews in Aquaculture, 6, 270–299.CrossRefGoogle Scholar
  91. Yoshino, Y. (2015). Sekai de ichi-ban utsukushii umi no ikimono zukan (Most beautiful creatures in the ocean). 231 pp. Sogensha, Osaka. (In Japanese).Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kaori Wakabayashi
    • 1
    Email author
  • Yuji Tanaka
    • 2
  • Bruce F. Phillips
    • 3
  1. 1.Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Graduate School of Marine Science and TechnologyTokyo University of Marine Science and TechnologyMinatoJapan
  3. 3.School of Molecular and Life SciencesCurtin UniversityPerthAustralia

Personalised recommendations