Plant Growth-Promoting Rhizobacteria (PGPRs): A Fruitful Resource

  • Bhupendra Koul
  • Simranjeet Singh
  • Daljeet Singh Dhanjal
  • Joginder SinghEmail author


The rhizosphere is a unique zone because of its richness in comparison to the nearby soil areas and the accumulation of a variety of organic compounds secreted by the root through exudation and rhizodeposition. Rhizobacteria use rhizosphere as their niche. Rhizospheric microbial communities are members of a complex food web utilizing a huge amount of plant-released nutrients, affecting the carbon flow and transformation. The rhizospheric regions provide a congenial environment for the multiplication and metabolic activity of various microorganisms, through a variety of plant-released compounds like amino acids, sugars, and growth factors, that provide energy and nutrients to the microorganisms. Several rhizobacteria exhibits a commensal relationship with the host-plant, therefore does not effect its physiology and growth. Plant growth-promoting rhizobacteria (PGPRs) came into limelight after its sustainable agricultural and environment-friendly practices to serve the increased population. PGPRs are supposed to replace artificial growth regulators, chemical fertilizers, and pesticides which impose various adverse effects on sustainable agriculture. Innovative research and deep insight of the mechanism of PGPR-associated phytostimulation would enable us to find the way to isolate or develop a competent rhizobacterial strain which could sustain itself in varied agroecological conditions. With the advancements in technology and research, worldwide utilization of PGPRs will become a reality, which shall  ensure the stability as well as productivity of agro-ecosystems for guiding us on the road to an ideal agricultural system.


Rhizobacteria Rhizosphere Function Benefits 


  1. Abd-Alla MH (1994) Phosphatases and the utilization of organic phosphorus by rhizobium leguminosarum biovar viceae. Lett Appl Microbiol 18(5):294–296CrossRefGoogle Scholar
  2. Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol 39:423–426PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahemad M, Khan MS (2009a) Effect of insecticide-tolerant and plant growth promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J Crop Sci Biotechnol 12:213–222CrossRefGoogle Scholar
  4. Ahemad M, Khan MS (2009b) Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards Rhizobium pea symbiosis. Bull Environ Contam Toxicol 82:761–7660PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ahemad M, Khan MS (2010a) Influence of selective herbicides on plant growth promoting traits of phosphate solubilizing Enterobacter asburiae strain PS2. Res J Microbiol 5:849–857CrossRefGoogle Scholar
  6. Ahemad M, Khan MS (2010b) Plant growth promoting activities of phosphate-solubilizing Enterobacter asburiae as influenced by fungicides. Eurasia J Biosci 4:88–95CrossRefGoogle Scholar
  7. Ahemad M, Khan MS (2010c) Comparative toxicity of selected insecticides to pea plants and growth promotion in response to insecticide-tolerant and plant growth promoting Rhizobium leguminosarum. Crop Prot 29:325–329CrossRefGoogle Scholar
  8. Ahemad M, Khan MS (2010d) Phosphate-solubilizing and plantgrowth- promoting Pseudomonas aeruginosa PS1 improves green gram performance in quizalafop-p-ethyl and clodinafop amended soil. Arch Environ Contam Toxicol 58:361–372PubMedCrossRefGoogle Scholar
  9. Ahemad M, Khan MS (2010e) Ameliorative effects of Mesorhizobium sp. MRC4 on chickpea yield and yield components under different doses of herbicide stress. Pestic Biochem Physiol 98:183–190CrossRefGoogle Scholar
  10. Ahemad M, Khan MS (2010f) Insecticide-tolerant and plant growth promoting Rhizobium improves the growth of lentil (Lens esculentus) in insecticide-stressed soils. Pest Manag Sci 67:423–429CrossRefGoogle Scholar
  11. Ahemad M, Khan MS (2010g) Growth promotion and protection of lentil (Lens esculenta) against herbicide stress by Rhizobium species. Ann Microbiol 60:735–745CrossRefGoogle Scholar
  12. Ahemad M, Khan MS (2011a) Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing Pseudomonas aeruginosa. Acta Microbiol Immunol Hung 58:169–187PubMedCrossRefPubMedCentralGoogle Scholar
  13. Ahemad M, Khan MS (2011b) Effects of insecticides on plant growth- promoting activities of phosphate solubilizing rhizobacterium Klebsiella sp. strain PS19. Pestic Biochem Physiol 100:51–56CrossRefGoogle Scholar
  14. Ahemad M, Khan MS (2011c) Assessment of plant growth promoting activities of rhizobacterium Pseudomonas putida under insecticide-stress. Microbiol J 1:54–64CrossRefGoogle Scholar
  15. Ahemad M, Khan MS (2011d) Effect of pesticides on plant growth promoting traits of greengram-symbiont, Bradyrhizobium sp. Strain MRM6. Bull Environ Contam Toxicol 86:384–388PubMedCrossRefPubMedCentralGoogle Scholar
  16. Ahemad M, Khan MS (2011e) Ecotoxicological assessment of pesticides towards the plant growth promoting activities of Lentil (Lens esculentus)-specific Rhizobium sp. strain MRL3. Ecotoxicology 20:661–669PubMedCrossRefPubMedCentralGoogle Scholar
  17. Ahemad M, Khan MS (2011f) Biotoxic impact of fungicides on plant growth promoting activities of phosphate-solubilizing Klebsiella sp. isolated from mustard (Brassica campestris) rhizosphere. J Pest Sci. Scholar
  18. Ahemad M, Khan MS (2011g) Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19. Curr Microbiol 62:532–538PubMedCrossRefPubMedCentralGoogle Scholar
  19. Ahemad M, Khan MS (2011h) Insecticide-tolerant and plant growth promoting Bradyrhizobium sp. (vigna) improves the growth and yield of greengram [Vigna radiata (L.) Wilczek] in insecticide stressed soils. Symbiosis 54:17–27CrossRefGoogle Scholar
  20. Ahemad M, Khan MS (2011i) Effect of tebuconazole-tolerant and plant growth promoting Rhizobium isolate MRP1 on pea-Rhizobium symbiosis. Sci Hortic 129:266–272CrossRefGoogle Scholar
  21. Ahemad M, Khan MS (2011j) Plant growth promoting fungicide tolerant Rhizobium improves growth and symbiotic characteristics of lentil (Lens esculentus) in fungicide-applied soil. J Plant Growth Regul 30:334–342CrossRefGoogle Scholar
  22. Ahemad M, Khan MS (2011k) Pseudomonas aeruginosa strain PS1 enhances growth parameters of greengram [Vigna radiata (L.) Wilczek] in insecticide-stressed soils. J Pest Sci 84:123–131CrossRefGoogle Scholar
  23. Ahemad M, Khan MS (2011l) Response of greengram [Vigna radiata (L.) Wilczek] grown in herbicide-amended soil to quizalafop-p-ethyl and clodinafop tolerant plant growth promoting Bradyrhizobium sp. (vigna) MRM6. J Agric Sci Technol 13:1209–1222Google Scholar
  24. Ahemad M, Khan MS (2012a) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica campestris) rhizosphere. Chemosphere 86:945–950PubMedCrossRefPubMedCentralGoogle Scholar
  25. Ahemad M, Khan MS (2012b) Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specific Rhizobium sp. strain MRP1. Emirates J Food Agric 24:334–343Google Scholar
  26. Ahemad M, Khan MS (2012c) Evaluation of plant growth promoting activities of rhizobacterium Pseudomonas putida under herbicide-stress. Ann Microbiol 62:1531–1540CrossRefGoogle Scholar
  27. Ahemad M, Khan MS (2012d) Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J Saudi Soc Agric Sci 11:63–71Google Scholar
  28. Ahemad M, Khan MS (2012e) Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J Biol Sci 19:451–459PubMedPubMedCentralCrossRefGoogle Scholar
  29. Ahemad M, Khan MS (2012f) Productivity of greengram in tebuconazole-stressed soil, by using a tolerant and plant growth promoting Bradyrhizobium sp. MRM6 strain. Acta Physiol Plant 34:245–254CrossRefGoogle Scholar
  30. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20CrossRefGoogle Scholar
  31. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181PubMedCrossRefPubMedCentralGoogle Scholar
  32. Ahmad M, Zahir ZA, Khalid M (2013) Efficacy of Rhizobium an Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176PubMedCrossRefPubMedCentralGoogle Scholar
  33. Akhgar R, Arzanlou M, Bakker PAHM, Hamidpour M (2014) Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing Pseudomonas sp. in the rhizosphere of salt-stressed canola. Pedosphere 24:161–468CrossRefGoogle Scholar
  34. Anjum MA, Sajjad MR, Akhtar N, Qureshi MA, Iqbal A, Rehman JA, Mahmud-ul-Hasan (2007) Response of cotton to plant growth promoting rhizobacteria (PGPR) inoculation under different levels of nitrogen. J Agric Res 45:135–143Google Scholar
  35. Antoun H, Kloepper JW (2001) Plant growth promoting rhizobacteria. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 1477–1480CrossRefGoogle Scholar
  36. Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effects on radishes (Raphanus sativus L.). Plant Soil 204:57–67CrossRefGoogle Scholar
  37. Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677Google Scholar
  38. Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162Google Scholar
  39. Ashraf MA, Asif M, Zaheer A, Malik A, Ali Q, Rasool M (2013) Plant growth promoting rhizobacteria and sustainable agriculture: a review African. J Microbiol Res 7(9):704–709Google Scholar
  40. Babalola OO, Osir EO, Sanni A, Odhaimbo GD, Bulimo WD (2003) Amplification of 1-aminocyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soils. Afr J Biotechnol 2:157–160CrossRefGoogle Scholar
  41. Baharlouei J, Khavazi K, Pazira E, Solhi M (2011) Evaluation of inoculation of plant growth-promoting rhizobacteria on cadmium and lead uptake by canola and barley. Afr J Microbiol Res 5(14):1747–1754Google Scholar
  42. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefPubMedCentralGoogle Scholar
  43. Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazatrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491CrossRefGoogle Scholar
  44. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588PubMedCrossRefPubMedCentralGoogle Scholar
  45. Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25(10):2397–2406CrossRefGoogle Scholar
  46. Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33CrossRefGoogle Scholar
  47. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250CrossRefGoogle Scholar
  48. Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing Bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320CrossRefGoogle Scholar
  49. Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051PubMedPubMedCentralCrossRefGoogle Scholar
  50. Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol 11:557–574CrossRefGoogle Scholar
  51. Berendsen RL, Verk MCV, Stringlis IA, Zamioudis C, Tommassen J, Pieterse CMJ, Bakker PAHM (2015) Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics 16:539PubMedPubMedCentralCrossRefGoogle Scholar
  52. Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229PubMedCrossRefPubMedCentralGoogle Scholar
  53. Berraho EL, Lesueur D, Diem HG, Sasson A (1997) Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium. World J Microbiol Biotechnol 13:501–510CrossRefGoogle Scholar
  54. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Fact 13(66):1–10Google Scholar
  55. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedPubMedCentralCrossRefGoogle Scholar
  56. Boddey RM, Baldani VLD, Baldani JI, Dobereiner J (1986) Effect of inoculation of Azospirillum spp. on nitrogen accumulation by field grown wheat. Plant Soil 95(1):109–121CrossRefGoogle Scholar
  57. Boddey RM, Polidoro JC, Resende AS, Alves BJR, Urquiaga S (2001) Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugar cane and other grasses. Aust J Plant Physiol 28:889–895Google Scholar
  58. Böhm M, Hurek T, Reinhold-Hurek B (2007) Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. Strain BH72. Molecular Plant-Microbe Interactions 20:526–533PubMedCrossRefPubMedCentralGoogle Scholar
  59. Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-, Hg-and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286PubMedCrossRefPubMedCentralGoogle Scholar
  60. Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist 184(2):449–456PubMedCrossRefPubMedCentralGoogle Scholar
  61. Burd GI, Dixon DG, Glick BR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245PubMedCrossRefPubMedCentralGoogle Scholar
  62. Canbolat MY, Bilen S, Cakmakc R, Sahin F, Aydın A (2006) Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fertil Soils 42:350–357CrossRefGoogle Scholar
  63. Cankar K, Kraigher H, Ravnikar M, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce ( Picea abies L. Karst). FEMS Microbiol Lett 244:341–345PubMedCrossRefPubMedCentralGoogle Scholar
  64. Carrillo-Castaneda G, Munoz JJ, Peralta-Videa JR, Gomez E, Gardea-Torresdey JL (2003) Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutr 26:1801–1814CrossRefGoogle Scholar
  65. Cazorla FM, Romero D, Perez-Garcıa A, Lugtenberg BJJ, de Vicente A, Bloemberg G (2007) Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol 103:1950–1959PubMedCrossRefPubMedCentralGoogle Scholar
  66. Chanway CP, Shishido M, Nairn J, Jungwirth S, Markham J, Xiao G, Holl FB (2000) Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. For Ecol Manag 133:81–88CrossRefGoogle Scholar
  67. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plantgrowth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  68. Compant S, Kaplan H, Sessitsch A, Nowak J, Ait Barka E, Clément C (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93PubMedCrossRefPubMedCentralGoogle Scholar
  69. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  70. Conn KL, Nowak J, Lazarovitz G (1997) A gnotobiotic bioassay for studying interactions between potato and plant growth-promoting rhizobacteria. Can J Microbiol 43:801–808CrossRefGoogle Scholar
  71. Cook EH Jr, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL (1995) Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 56(4):993–998PubMedPubMedCentralGoogle Scholar
  72. Cristina L, Pérez SL, Rafael ZA, Jorge D (2013) Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol Fertil Soil 49:723–733CrossRefGoogle Scholar
  73. Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) ‘In situ’ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330PubMedCrossRefPubMedCentralGoogle Scholar
  74. Das AJ, Kumar M, Kumar R (2013) Plant growth promoting PGPR: an alternative of chemical fertilizer for sustainable environment friendly agriculture. Res J Agric For Sci 1:21–23Google Scholar
  75. De Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180PubMedCrossRefPubMedCentralGoogle Scholar
  76. Deshwal VK, Pandey P, Kang SC, Maheshwari DK (2003) Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Indian J Exp Biol 41:1160–1164PubMedPubMedCentralGoogle Scholar
  77. Dessaux Y, Grandclément C, Faure D (2016) Engineering the Rhizosphere. Trends Plant Sci 21(3):266PubMedCrossRefPubMedCentralGoogle Scholar
  78. Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394PubMedCrossRefPubMedCentralGoogle Scholar
  79. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  80. Dörr J, Hurek T, Reinhold-Hurek B (1998) Type IV pili are involved in plant microbe and fungus microbe interactions. Mol Microbiol 30:7–17PubMedCrossRefPubMedCentralGoogle Scholar
  81. Duhan JS, Dudeja SS, Khurana AL (1998) Siderophore production in relation to N2 fixation and iron uptake in pigeon pea-Rhizobium symbiosis. Folia Microbiol 43:421–426CrossRefGoogle Scholar
  82. Duijff BJ, Gianinazzi-Pearson V, Lemanceau P (1997) Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol 135:325–334CrossRefGoogle Scholar
  83. Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic-Amsterdam 110:324–327CrossRefGoogle Scholar
  84. Frankenberger WT, Arshad M (1995) Phytormones in Soils. Marcel Dekker Inc., New York, pp 35–71Google Scholar
  85. Fridlender M, Inbar J, Chet I (1993) Biological control of soil borne plant pathogens by ab-1,3 glucanase-producing Pseudomonads cepacian. Soil Biol Biochem 25:1211–1221CrossRefGoogle Scholar
  86. Galippe V (1887) Note sur la présence de micro-organismes dans les tissus végétaux. Comptes Rendus Hebdomadaires de la Société de Biologie, Paris, pp 410–416Google Scholar
  87. Gamalero E, Fracchia L, Cavaletto M, Garbaye J, Frey-Klett P, Varese GC, Martinotti M (2003) Characterization of functional traits of two fluorescent pseudomonads isolated from basidiomes of ectomycorrhizal fungi. Soil Biol Biochem 35(1):55–65CrossRefGoogle Scholar
  88. Gamalero E, Lingua G, Caprì FG, Fusconi A, Berta G, Lemanceau P (2004) Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS Microbiol Ecol 48:79–87PubMedCrossRefPubMedCentralGoogle Scholar
  89. Gamalero E, Berta G, Glick BR (2009) The use of microorganisms to facilitate the growth of plants in saline soils. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, HeidelbergGoogle Scholar
  90. Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56:403–407PubMedCrossRefPubMedCentralGoogle Scholar
  91. Garcia de Salamone IE, Dobereiner J, Urquiaga S, Boddey RM (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol Fertil Soils 23:249–256CrossRefGoogle Scholar
  92. Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411PubMedCrossRefPubMedCentralGoogle Scholar
  93. Garg N, Geetanjali (2007) Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. Agron Sustain Dev 27:59–68CrossRefGoogle Scholar
  94. Genrich IB, Dixon DG, Glick BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668Google Scholar
  95. Gholami A, Shahsavani S, Nezarat S (2009) The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int J Biol Life Sci 1:35–40Google Scholar
  96. Ghorbanpour MNM, Hosseini S, Rezazadeh M, Omidi KK, Etminan A (2010) Hyoscyamine and scopolamine production of black henbane (Hyoscyamus niger) infected with Pseudomonas putida and P. fluorescens strains under water deficit stress. Planta Med 76(12):167CrossRefGoogle Scholar
  97. Giordano W, Hirsch AM (2004) The expression of MaEXP1, a Melilotus alba expansin gene, is upregulated during the sweet clover-Sinorhizobium meliloti interaction. MPMI 17:613–622PubMedCrossRefPubMedCentralGoogle Scholar
  98. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374PubMedCrossRefPubMedCentralGoogle Scholar
  99. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, ScientificaGoogle Scholar
  100. Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378PubMedCrossRefPubMedCentralGoogle Scholar
  101. Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol 41(6):533–536CrossRefGoogle Scholar
  102. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producingsoil bacteria. Eur J Plant Pathol 119:329–339CrossRefGoogle Scholar
  103. Goormachtig S, Capoen W, Holsters M (2004) Rhizobium infection: lessons from the versatile nodulation behaviour of water-tolerant legumes. Trends Plant Sci 11:518–522CrossRefGoogle Scholar
  104. Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1–19Google Scholar
  105. Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H-S, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140PubMedCrossRefPubMedCentralGoogle Scholar
  106. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  107. Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison to annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56CrossRefGoogle Scholar
  108. Gupta A, Meyer JM, Goel R (2002a) Development of heavy metal resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI4014 and their characterization. Curr Microbiol 45:323–332PubMedCrossRefPubMedCentralGoogle Scholar
  109. Gupta CP, Dubey RC, Maheshwari DK (2002b) Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol Fertl Soils 35:399–405CrossRefGoogle Scholar
  110. Gupta A, Rai V, Bagdwal N, Goel R (2005) In situ characterization of mercury resistant growth promoting fluorescent pseudomonads. Microbiol Res 160:385–388PubMedCrossRefPubMedCentralGoogle Scholar
  111. Gupta S, Meena MK, Datta S (2014) Isolation, characterization of plant growth promoting bacteria from the plant Chlorophytum borivilianum and in-vitro screening for activity of nitrogen fixation, phosphate solubilization and IAA production. Int J Curr Microbial Appl Sci 3:1082–1090Google Scholar
  112. Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plantarum 111:206–211CrossRefGoogle Scholar
  113. Habib SH, Kausar H, Saud H (2016) Plant growth promoting rhizobacteria enhance salinity stress tolerance in Okra through ROS-Scavenging enzymes. Bio Med Res Int 2016:1–10Google Scholar
  114. Haggag WM, Abouziena HF, Abd-El-Kreem F, Habbasha S (2015) Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J Chem Pharm 7(10):882–889Google Scholar
  115. Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2(12):1221–1230PubMedCrossRefPubMedCentralGoogle Scholar
  116. Hallmann J (2001) Plant interactions with endophytic bacteria. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant pathogen associations. CABI Publishing, Wallingford, pp 87–119CrossRefGoogle Scholar
  117. Hallmann J, Berg B (2007) Spectrum and population dynamics of bacterial root endophytes. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin Heidelberg, pp 15–31Google Scholar
  118. Hamzah A, Hapsari RI, Wisnubroto EI (2016) Phytoremediation of Cadmium-contaminated agricultural land using indigenous plants. Int J Environ Agric Res 2(1):8–14Google Scholar
  119. Hansen M, Kragelund L, Ybroe O, Sorensen J (1997) Early colonization of barley roots by Pseudomonas fluorescens studied by immunofluorescence technique and confocal laser scanning microscopy. FEMS Microbiol Ecol 23:353–360CrossRefGoogle Scholar
  120. Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology 16:463–471PubMedCrossRefPubMedCentralGoogle Scholar
  121. Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14CrossRefGoogle Scholar
  122. Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257CrossRefGoogle Scholar
  123. Hernández-Rodríguez A, Heydrich-Pérez M, Acebo-Guerrero Y, Velázquez-del Valle MG, Hernández-Lauzardo AN (2008) Antagonistic activity of Cuban native rhizobacteria against Fusarium verticillioides (Sacc.) Nirenb. in maize (Zea mays L.). Appl Soil Ecol 36:184–186Google Scholar
  124. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152CrossRefGoogle Scholar
  125. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S et al (2005) Effects of 389 biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  126. Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum-induced damping-off of cotton seedling by Pseudomonas fluorescens and its antibiotic Pyoluteorin. Phytopathology 70:712–715CrossRefGoogle Scholar
  127. Hurek T, Handley LL, Reinhold-Hurek B, Piche Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242PubMedCrossRefPubMedCentralGoogle Scholar
  128. Hynes RK, Leung GC, Hirkala DL, Nelson LM (2008) Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil and chickpea grown in western Canada. Can J Microbiol 54:248–258PubMedCrossRefPubMedCentralGoogle Scholar
  129. Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677PubMedPubMedCentralCrossRefGoogle Scholar
  130. Idris A, Labuschagne N, Korsten L (2009) Efficacy of rhizobacteria for growth promotion in sorghum under greenhouse conditions and selected modes of action studies. J Agric Sci 147:17–30CrossRefGoogle Scholar
  131. Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333PubMedCrossRefPubMedCentralGoogle Scholar
  132. Ipek M, Pirlak L, Esitken A, Dönmez MF, Turan M, Sahin F (2014) Plant growth-promoting rhizobacteria (Pgpr) increase yield, growth and nutrition of strawberry under high-calcareous soil conditions. J Plant Nutr 37(7):990–1001CrossRefGoogle Scholar
  133. Islam S, Akanda AM, Prova A, Islam Md T, Hossain Md (2016) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol 6(1360):1–12Google Scholar
  134. Isopi R, Fabbri P, Del-Gallo M, Puppi G (1995) Dual inoculation of Sorghum bicolor (L.) Moench ssp. bicolor with vesicular arbuscular mycorrhizas and Acetobacter diazotrophicus. Symbiosis 18:43–55Google Scholar
  135. Jahanian A, Chaichi MR, Rezaei K, Rezayazdi K, Khavazi K (2012) The effect of plant growth promoting rhizobacteria (pgpr) on germination and primary growth of artichoke (Cynara scolymus). Int J Agric Crop Sci 4:923–929Google Scholar
  136. Jaleel CA et al (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Coll Surf B Biointerfaces 60:7–11CrossRefGoogle Scholar
  137. Jaleel CA, Gopi R, Gomathinayagam M, Panneerselvam R (2009) Traditional and non-traditional plant growth regulators alter phytochemical constituents in Catharanthus roseus. Process Biochem 44:205–209CrossRefGoogle Scholar
  138. James EK, Olivares FL, Baldani JI, Dobereiner J (1997) Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor L. Moench. J Exp Bot 48:785–797CrossRefGoogle Scholar
  139. James EK, Gyaneshwar P, Mathan N et al (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906PubMedCrossRefPubMedCentralGoogle Scholar
  140. Jangid MK, Khan IM, Singh S (2012) Constraints faced by the organic and conventional farmers in adoption of organic farming practices. Indian Res J Ext Educ II:28–32Google Scholar
  141. Jeon J, Lee S, Kim H, Ahn T, Song H (2003) Plant growth promotion in soil by some inoculated microorganisms. J Microbiol 41:271–276Google Scholar
  142. Jha PN, Kumar A (2007) Endophytic colonization of Typha australis by a plant growth-promoting bacterium Klebsiella oxytoca strain GR-3. J Appl Microbiol 103:1311–1320PubMedCrossRefPubMedCentralGoogle Scholar
  143. Jiang C, Sheng X, Qian M, Wang Q (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere 72:157–164PubMedCrossRefPubMedCentralGoogle Scholar
  144. Jones DL, Hinsinger P (2008) The rhizosphere: complex by design. Plant Soil 312:1–6CrossRefGoogle Scholar
  145. Jones AR, Kramer EM, Knox K, Swarup R, Bennett MJ, Lazarus CM, Leyser HM, Grierson CS (2009) Auxin transport through non-hair cells sustains root-hair development. Nat Cell Biol 11(1):78–84PubMedCrossRefPubMedCentralGoogle Scholar
  146. Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod 2:141–152Google Scholar
  147. Kamal R, Gusain YS, Kuma V (2014) Interaction and symbiosis of fungi, Actinomycetes and plant growth promoting rhizobacteria with plants: strategies for the improvement of plants health and defense system. Int J Curr Microbial Appl Sci 3(7):564–585Google Scholar
  148. Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hortic-Amsterdam 114:16–20CrossRefGoogle Scholar
  149. Kaushik R, Saxena AK, Tilak KVBR (2000) Selection of Tn5:lacZ mutants isogenic to wild type Azospirillum brasilense strains capable of growing at sub-optimal temperature. World J Microbiol Biotechnol 16:567–570CrossRefGoogle Scholar
  150. Kempster VN, Scott ES, Davies KA (2002) Evidence for systemic, cross-resistance in white clover (Trifolium repens) and annual medic (Medicago truncatula var truncatula) induced by biological and chemical agents. Biocontrol Sci Technol 12(5):615–623CrossRefGoogle Scholar
  151. Khan AA, Jilani G, Akhtar MS, Naqvi SM, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1(1):48–58Google Scholar
  152. Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi–current perspective. Arch Agron Soil Sci 56(1):73–98CrossRefGoogle Scholar
  153. Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332PubMedCrossRefPubMedCentralGoogle Scholar
  154. Kibret Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium resistant rhizobacteria. Soil Biol Biochem 40:74–84CrossRefGoogle Scholar
  155. Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33:389–397PubMedCrossRefPubMedCentralGoogle Scholar
  156. Kiss T, Farkas E (1998) Metal-binding ability of desferrioxamine B. J Inclusion Phenom Mol Recognit Chem 32:385–403CrossRefGoogle Scholar
  157. Kloepper JW (1978) Plant growth-promoting rhizobacteria on radishes. In Proc. of the 4th Internet. Conf. on Plant Pathogenic Bacter, Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, France, 2: 879–882Google Scholar
  158. Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the IVth International Conference on Plant Pathogenic Bacteria, pp 879–882Google Scholar
  159. Kloepper JW, Leong J, Teintze M, Schroth MN (1980a) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286(5776):885CrossRefGoogle Scholar
  160. Kloepper JW, Leong J, Teintze M, Schroth MN (1980b) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4(5):317–320CrossRefGoogle Scholar
  161. Kloepper JW, Hume DJ, Scher FM, Singleton C, Tipping B, Lalibert EM, Fraulay K, Kutchaw T et al (1987) Plant growth-promoting rhizobacteria on canola (rapeseed). Phytopathology 71:42–46Google Scholar
  162. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productity. Trends Biotechnol 7:39–43CrossRefGoogle Scholar
  163. Kloepper JW, Tuzun S, Liu L, Wei G (1993) Plant growth promoting rhizobacteria as inducers of systemic disease resistance. In: Lumsgen RD, Waughn JL (eds) Pest management: biologically based technologies. American Chemical Society Publication, Washington, DCGoogle Scholar
  164. Knee EM, Gong FC, Gao M, Teplitski M, Jones AR, Foxworthy A, Mort AJ, Bauer WD (2001) Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol Plant Microbe Interact 14(6):775–784PubMedCrossRefGoogle Scholar
  165. Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266CrossRefGoogle Scholar
  166. Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16(4):315–322CrossRefGoogle Scholar
  167. Krechel A, Ditz M, Ulrich A, Faupel A, Hallmann J, Berg G (2004) Bacterial life inside and outside potato roots and leaves. Bulletin OILB/SROP 27:157–163Google Scholar
  168. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Inter 7(1):6–15CrossRefGoogle Scholar
  169. Kumar P, Dubey RC (2012) Plant growth promoting rhizobacteria for biocontrol of phytopathogens and yield enhancement of Phaseolus vulgaris. J Curr Perspect Appl Microbiol 1:6–38Google Scholar
  170. Kumar V, Behl RK, Narula N (2001) Establishment of phosphate solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156:87–93PubMedCrossRefGoogle Scholar
  171. Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683PubMedCrossRefGoogle Scholar
  172. Lau JA, Lennon JT (2011) Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192(1):215–224PubMedCrossRefGoogle Scholar
  173. Lawongsa P, Boonkerd N, Wongkaew S, O’Gara F, Teaumroong N (2008) Molecular and phenotypic characterization of potential plant growth-promoting Pseudomonas from rice and maize rhizospheres. World J Microbiol Biotechnol 24:1877–1884CrossRefGoogle Scholar
  174. Liu H, He Y, Jiang H, Peng H, Huang X, Zhang X, Thomashow LS, Xu Y (2007) Characterization of a phenazine producing strain Pseudomonas chlororaphis GP72 with broad spectrum antifungal activity from green pepper rhizosphere. Curr Microbiol 54:302–306PubMedCrossRefPubMedCentralGoogle Scholar
  175. Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. J Geomicrobiol 29:413–421CrossRefGoogle Scholar
  176. Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606CrossRefGoogle Scholar
  177. Lucas GJA, Probanza A, Ramos B, Palomino MR, Gutierrez Manero FJ (2004) Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie 24:169–176CrossRefGoogle Scholar
  178. Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13PubMedCrossRefPubMedCentralGoogle Scholar
  179. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefPubMedCentralGoogle Scholar
  180. Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490PubMedCrossRefPubMedCentralGoogle Scholar
  181. Ma Y, Rajkumar M, Freitas H (2009a) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75:719–725PubMedCrossRefPubMedCentralGoogle Scholar
  182. Ma Y, Rajkumar M, Freitas H (2009b) Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J Hazard Mater 166:1154–1161PubMedCrossRefPubMedCentralGoogle Scholar
  183. Ma Y, Rajkumar M, Freitas H (2009c) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90:831–837PubMedCrossRefPubMedCentralGoogle Scholar
  184. Ma Y, Rajkumar M, Luo Y, Freitas H (2011a) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237PubMedCrossRefPubMedCentralGoogle Scholar
  185. Ma Y, Rajkumar M, Vicente JA, Freitas H (2011b) Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. Int J Phytoremediation 13:126–139PubMedCrossRefPubMedCentralGoogle Scholar
  186. Ma Y, Prasad MNV, Rajkuma M, Freitas H (2011c) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258PubMedPubMedCentralCrossRefGoogle Scholar
  187. Madhaiyan M, Poonguzhali S, Kang B-G, Lee Y-J, Chung J-B, Sa T-M (2010) Effect of co-inoculation of methylotrophic Methylobaceriumoryzae with Azospirillum brasilense and Burkholeria pyrrocinia on the growth and nutrient uptake of tomato, red pepper and rice. Plant Soil 328:71–82CrossRefGoogle Scholar
  188. Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:1–14Google Scholar
  189. Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37–44CrossRefGoogle Scholar
  190. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572PubMedCrossRefPubMedCentralGoogle Scholar
  191. McNear DH Jr (2013) The rhizosphere – roots, soil and everything in between. Nat Educ Knowl 4(3):1Google Scholar
  192. Meena PD, Awasthi RP, Chattopadhyay C, Kolte SJ, Kumar A (2016) Alternaria blight: a chronic disease in rapeseed-mustard. J Oilseed Brassica 1(1):1–1Google Scholar
  193. Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 472:110–117CrossRefGoogle Scholar
  194. Mehnaz S, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20:1614–1623PubMedCrossRefPubMedCentralGoogle Scholar
  195. Mena-Violante H, Olalde-Portugal V (2007) Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci Hortic-Amsterdam 113:103–106CrossRefGoogle Scholar
  196. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663PubMedCrossRefPubMedCentralGoogle Scholar
  197. Mrkovacki N, Milic V (2001) Use of Azotobacter chroococcum as potentially useful in agricultural application. Ann Microbiol 51:145–158Google Scholar
  198. Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigation on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC-deaminase activity. Can J Microbiol 53:1141–1149PubMedCrossRefPubMedCentralGoogle Scholar
  199. Naik MM, Dubey SK (2011) Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Curr Microbiol 62:409–414PubMedCrossRefPubMedCentralGoogle Scholar
  200. Nakkeeran S, Fernando WGD, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296Google Scholar
  201. Nandakumar R (1998) Induction of systemic resistance in rice with fluorescent Pseudomonas for management of sheath blight disease, MSc. Thesis, Tnua, Coimbatore, IndiaGoogle Scholar
  202. Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131CrossRefGoogle Scholar
  203. Nehl DB, Allen SJ, Brown JF (1996) Deleterious rhizosphere bacteria: an integrated perspective. Appl Soil Ecol 5:1–20CrossRefGoogle Scholar
  204. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726PubMedCrossRefPubMedCentralGoogle Scholar
  205. Neubauer U, Furrer G, Kayser A, Schulin R (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytoremediation 2:353–368CrossRefGoogle Scholar
  206. Ngampimol H, Kunathigan V (2008) The Study of shelf life for liquid biofertilizer from vegetable waste. AU J Technol 11:204–208Google Scholar
  207. Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125CrossRefGoogle Scholar
  208. Nivya RM (2015) A Study on plant growth promoting activity of the Endophytic bacteria isolated from the root nodules of Mimosa pudica Plant. Int J Innov Res Sci Er Technol 4:6959–6968CrossRefGoogle Scholar
  209. Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283PubMedCrossRefGoogle Scholar
  210. Noordman WH, Reissbrodt R, Bongers RS, Rademaker ILW, Bockelmann W, Smit G (2006) Growth stimulation of Brevibacterium sp. by siderophores. J Appl Microbiol 101:637–646PubMedCrossRefPubMedCentralGoogle Scholar
  211. Okunishi S, Sako K, Mano H, Imamura A, Morisaki H (2005) Bacterial flora of endophytes in the maturing seed of cultivated rice (Oryza sativa). Microbes Environ 20:168–177CrossRefGoogle Scholar
  212. Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic-Amsterdam 111:38–43CrossRefGoogle Scholar
  213. Pandey A, Sharma E, Palni LMS (1998) Influence of bacterial inoculation on maize in upland farming systems of the Sikkim Himalaya. Soil Biol Biochem 30:379–384CrossRefGoogle Scholar
  214. Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a Sub-Alpine Location in the Indian Central Himalaya. Curr Microbiol 53:102–107PubMedCrossRefPubMedCentralGoogle Scholar
  215. Pandey P, Bish S, Sood A, Aeron A, Sharma GD, Maheshwari DK (2012) Consortium of plant-growth-promoting bacteria: future perspective in agriculture. In: Bacteria in agrobiology: plant probiotics. Springer-Verlag, HeidelbergGoogle Scholar
  216. Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3(1):25–31Google Scholar
  217. Paterson E, Sim A (2000) Effect of nitrogen supply and defoliation on loss of organic compounds from roots of Festuca rubra. J Exp Bot 51:1449–1457PubMedCrossRefPubMedCentralGoogle Scholar
  218. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220PubMedCrossRefPubMedCentralGoogle Scholar
  219. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801PubMedPubMedCentralCrossRefGoogle Scholar
  220. Pawar ST, Bhosale AA, Gawade TB, Nale TR (2016) Isolation, screening and optimization of exo-polysaccharide producing bacterium from saline soil. J Microbiol Biotechnol Res 3(3):24–31Google Scholar
  221. Persello Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199CrossRefGoogle Scholar
  222. Phi QT, Yu-Mi P, Keyung-Jo S, Choong-Min R, Seung-Hwan P, Jong-Guk K, Sa-Youl G (2010) Assessment of root-associated Paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper. J Microbiol Biotechnol 20:1605–1613PubMedPubMedCentralGoogle Scholar
  223. Pindi PK, Satyanarayana SDV (2012) Liquid microbial consortium-a potential tool for sustainable soil health. J Biofertil Biopestic 3(124).
  224. Podile AR, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 195–230CrossRefGoogle Scholar
  225. Poonguzhali S, Madhaiyan M, Sa T (2008) Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18:773–777PubMedPubMedCentralGoogle Scholar
  226. Prathap M, Ranjitha KBD (2015) A critical review on plant growth promoting rhizobacteria. J Plant Pathol Microbiol 6(4):1–4Google Scholar
  227. Quingwen Z, Ping L, Gang W, Qingnian C (1998) On the biochemical mechanismof induced resistance of cotton to cotton bollworm by cutting off young seedling at plumular axis. Acta Phytophylocica Sinica 25:209–212Google Scholar
  228. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and soil, 321(1–2):341–361CrossRefGoogle Scholar
  229. Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71(5):834–842PubMedCrossRefPubMedCentralGoogle Scholar
  230. Rajkumar M, Nagendran R, Kui JL, Wang HL, Sung ZK (2006) Influence of plant growth promoting bacteria and Cr (VI) on the growth of Indian mustard. Chemosphere 62:741–748PubMedCrossRefPubMedCentralGoogle Scholar
  231. Rajkumar M, Ma Y, Freitas H (2008) Characterization of metal resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. J Basic Microbiol 48:500–508PubMedCrossRefPubMedCentralGoogle Scholar
  232. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149PubMedCrossRefPubMedCentralGoogle Scholar
  233. Ramadan EM, AbdelHafez AA, Hassan EA, Saber FM (2016) Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afr J Microbiol Res 10:486–504CrossRefGoogle Scholar
  234. Rani A, Souche YS, Goel R (2009) Comparative assessment of in situ bioremediation potential of cadmium resistant acidophilic Pseudomonas putida 62BN and alkalophilic Pseudomonas monteilli 97AN strains on soybean. Int Biodet Biodegrad 63:62–66CrossRefGoogle Scholar
  235. Raupach GS, Liu L, Murphy JF, Tuzun S, Kloepper JW (1996) Induced systemic resistance in cucumber and tomato against Cucumber mosaic virus using plant growth-promoting rhizobacteria (PGPR). Plant Dis 80:891–894CrossRefGoogle Scholar
  236. Raza W, Ling N, Yang L, Huang Q, Shen Q (2016a) Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Rep 6:24856PubMedPubMedCentralCrossRefGoogle Scholar
  237. Raza W, Yousaf S, Rajer FU (2016b) Plant growth promoting activity of volatile organic compounds produced by bio-control strains. Sci Lett 4(1):40–43Google Scholar
  238. Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144PubMedCrossRefPubMedCentralGoogle Scholar
  239. Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161CrossRefGoogle Scholar
  240. Renwick A, Campbell R, Coe S (1991) Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomycets graminis. Plant Pathol 40:524–532CrossRefGoogle Scholar
  241. Revellin C, Giraud JJ, Silva N, Wadoux P, Catroux G (2001) Effect of some granular insecticides currently used for the treatment of maize crops (Zea mays) on the survival of inoculated Azospirillum lipoferum. Pest Manag Sci 57:1075–1080PubMedCrossRefPubMedCentralGoogle Scholar
  242. Robinson B, Russell C, Hedley MJ, Clothier B (2001) Cadmium adsorption by rhizobacteria: implications for New Zealand Pastureland. Agric Ecosyst Environ 87:315–321CrossRefGoogle Scholar
  243. Rodrigues EP, Rodrigues LS, de Oliveira ALM, Baldani VLD, Teixeira KRS, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302:249–261CrossRefGoogle Scholar
  244. Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde S, Dhakephalkar PK, Chopade BA (2011) Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol 21:556–566PubMedPubMedCentralGoogle Scholar
  245. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interaction with hosts. Mol Plant-Microbe Interact 19:827–837PubMedPubMedCentralCrossRefGoogle Scholar
  246. Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148(3):1547–1556PubMedPubMedCentralCrossRefGoogle Scholar
  247. Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134:312–319PubMedCrossRefPubMedCentralGoogle Scholar
  248. Ryu CM, Kim J, Choi O, Kim SH, Park CS (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control 39:282–289CrossRefGoogle Scholar
  249. Sachdev DP, Chaudhari HG, Kasure VM, Dahavale DD, Chopade BA (2009) Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J Exp Biol 47:993–1000PubMedPubMedCentralGoogle Scholar
  250. Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: A critical review. Life Sci Med Res 21:1–30Google Scholar
  251. Saleh SS, Glick BR (2001) Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and Pseudomonas putida UW4. Can J Microbiol 47:698–705PubMedCrossRefPubMedCentralGoogle Scholar
  252. Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26CrossRefGoogle Scholar
  253. Santoro MV, Bogino PC, Nocelli N, Cappellari LR, Giordano WF, Banchio E (2016) Analysis of plant growth promoting effects of Fluorescent pseudomonas strains isolated from Mentha piperita Rhizosphere and effects of their volatile organic compounds on essential oil composition. Front Microbiol 7(1085):1–17Google Scholar
  254. Saravanakumara D, Vijayakumarc C, Kumarb N, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26:556–565CrossRefGoogle Scholar
  255. Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798PubMedCrossRefPubMedCentralGoogle Scholar
  256. Savci S (2012) An agricultural pollutant: Chemical fertilizer. Int J Environ Sci Dev 3:73–80CrossRefGoogle Scholar
  257. Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26CrossRefGoogle Scholar
  258. Schobeck F, Dehne HW, Beicht W (1980) Untersuchungen zur Aktivierung unspezifisher resistenz mechanismen in Pflanzen. Z Pflk Pflschutz 87:654–666Google Scholar
  259. Schroth MN, Hancock JG (1982) Disease suppressive soil and root-colonizing bacteria. Science 216:1376–1381PubMedCrossRefPubMedCentralGoogle Scholar
  260. Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175PubMedCrossRefPubMedCentralGoogle Scholar
  261. Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32PubMedCrossRefPubMedCentralGoogle Scholar
  262. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field grown potato plants and their plant growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249PubMedCrossRefPubMedCentralGoogle Scholar
  263. Setiawati TC, Mutmainnah L (2016) Solubilization of potassium containing mineral by microorganisms from sugarcane rhizosphere. Agric Sci Procedia 9:108–117Google Scholar
  264. Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean. Lett Appl Microbiol 42:155–159PubMedCrossRefPubMedCentralGoogle Scholar
  265. Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155PubMedCrossRefPubMedCentralGoogle Scholar
  266. Sharaf-Eldin M, Elkholy S, Fernandez JA et al (2008) Bacillus subtilis FZB24 affects flower quantity and quality of Saffron (Crocus sativus). Planta Med 74:1316–1320PubMedPubMedCentralCrossRefGoogle Scholar
  267. Sharma SK, Johri BN, Ramesh A, Joshi OP, Prasad SVS (2011) Selection of plant growth-promoting Pseudomonas spp. that enhanced productivity of soybean-wheat cropping system in central India. J Microbiol Biotechnol 21:1127–1142PubMedCrossRefPubMedCentralGoogle Scholar
  268. Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042PubMedCrossRefPubMedCentralGoogle Scholar
  269. Sheng XF, Jiang CY, He LY (2008) Characterization of plant growth-promoting Bacillus edaphicus NBT and its effect on lead uptake by Indian mustard in a lead-amended soil. Can J Microbiol 54:417–422PubMedCrossRefPubMedCentralGoogle Scholar
  270. Sindhu SS, Gupta SK, Dadarwal KR (1999) Antagonistic effect of Pseudomonas sp. On pathogenic fungi and enhancement of growth of green gram (Vigna radiata). Biol Fertil Soils 29:62–68CrossRefGoogle Scholar
  271. Singh RP, Jha PN (2015) Molecular identification and characterization of rhizospheric bacteria for plant growth promoting ability. Int J Curr Biotechnol 3:12–18Google Scholar
  272. Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60PubMedCrossRefGoogle Scholar
  273. Smith EF (1911) Bacteria in relation to plant diseases, vol 2. Carnegie Institute, Washington, DCGoogle Scholar
  274. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4). Scholar
  275. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448PubMedPubMedCentralCrossRefGoogle Scholar
  276. Srinivas A, Bhalekar DN (2013) Constraints faced by farmers in adoption of biofertilizers. Int J Sci Res 3:2277–8179Google Scholar
  277. Stein T, Hayen-Schneg N, Fendrik I (1997) Contribution of BNF by Azoarcus sp. BH72 in Sorghum vulgare. Soil Biol Biochem 29:969–971CrossRefGoogle Scholar
  278. Stout MJ, Zehnder GW, Baur ME (2002) Potential for the use of elicitors of plant defence in arthropode management programs. Arch Insect Biochem Physiol 51:222–235PubMedCrossRefGoogle Scholar
  279. Sung KC, Chung YR (1997) Enhanced suppression of rice sheath blight using combination of bacteria which produced chitinases or antibiotics. In: Ogoshi A, Kobayashim K, Homma Y, Kodama F, Kondo N, Akioo S (eds) Plant growth promoting rhizobacteria present status and future prospects. Nakanishi Printing, SaproGoogle Scholar
  280. Tank N, Saraf M (2003) Phosphate solubilization, exopolysaccharide production and indole acetic acid secretion by rhizobacteria isolated from Trigonella graecum. Indian J Microbiol 43:37–40Google Scholar
  281. Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49:195–204PubMedCrossRefGoogle Scholar
  282. Thakuria D, Talukdar NC, Goswami C, Hazarika S, Boro RC, Khan MR (2004) Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr Sci 86:978–985Google Scholar
  283. Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852CrossRefGoogle Scholar
  284. Tripathi M, Munot HP, Shouch Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 5:233–237CrossRefGoogle Scholar
  285. Tsavkelova EA, Cherdyntseva TA, Netrusov AI (2005) Auxin production by bacteria associated with orchid roots. Microbiology 74:46–53CrossRefGoogle Scholar
  286. Ulloa-Ogaz AL, Munoz-Castellanos LN, Nevarez-Moorillon GV (2015) Biocontrol of phytopathogens: antibiotic production as mechanism of control, the battle against microbial pathogens. In: Mendez Vilas A (ed) Basic science, technological advance and educational programs, vol 1. Formatex Research Center, Badajoz, pp 305–309Google Scholar
  287. Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310PubMedCrossRefGoogle Scholar
  288. Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. Strains WCS417r. Phtopathology 81:728–734CrossRefGoogle Scholar
  289. Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce AN (2016) Role of plant growth promoting Rhizobacteria in agricultural sustainability – a review. Molecules 21(573):1–17Google Scholar
  290. Verma A, Kukreja K, Pathak DV, Suneja S, Narula N (2001) In vitro production of plant growth regulators (PGRs) by Azorobacter chroococcum. Indian J Microbiol 41:305–307Google Scholar
  291. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255:571–586CrossRefGoogle Scholar
  292. Vidhayasekaran P, Muthamilan M (1999) Evaluation of powder formulation of Pseudomonas fluorescence Pf1 for control of rice sheath blight. Biocontrol Sci Technol 9:67–74CrossRefGoogle Scholar
  293. Vijayan R, Palaniappan P, Tongmin SA, Elavarasi P, Manoharan N (2013) Rhizobitoxine enhances nodulation by inhibiting ethylene synthesis of Bradyrhizobium elkanii from Lespedeza species: validation by homology modelingand molecular docking study. World J Pharm Pharm Sci 2:4079–4094Google Scholar
  294. Vivas A, Biro B, Ruiz-Lozano JM, Barea JM, Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn toxicity. Chemosphere 52:1523–1533CrossRefGoogle Scholar
  295. Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319Google Scholar
  296. Wagg C, Jansa J, Schmid B, van der Heijden MG (2011) Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett 14(10):1001–1009PubMedCrossRefPubMedCentralGoogle Scholar
  297. Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51PubMedPubMedCentralCrossRefGoogle Scholar
  298. Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267PubMedCrossRefPubMedCentralGoogle Scholar
  299. Wani PA, Khan MS, Zaidi A (2007a) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by green gram plants. Chemosphere 70:36–45PubMedCrossRefPubMedCentralGoogle Scholar
  300. Wani PA, Khan MS, Zaidi A (2007b) Co inoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55:315–323CrossRefGoogle Scholar
  301. Wani PA, Khan MS, Zaidi A (2007c) Synergistic effects of the inoculation with nitrogen fixing and phosphate solubilizing rhizobacteria on the performance of field grown chickpea. J Plant Nutr Soil Sci 170:283–287CrossRefGoogle Scholar
  302. Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163PubMedCrossRefPubMedCentralGoogle Scholar
  303. Wei G, Kloepper JW, Tuzun S (1996) Induction of systemic resistance to cucumber disease and increase plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86:221–224CrossRefGoogle Scholar
  304. Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms: biotechnology and release of GMOs. VCH, New York, pp 1–18Google Scholar
  305. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52(1):487–511PubMedCrossRefPubMedCentralGoogle Scholar
  306. Wittenberg JB, Wittenberg BA, Day DA, Udvardi MK, Appleby CA (1996) Siderophore bound iron in the peribacteroid space of soybean root nodules. Plant Soil 178:161–169CrossRefGoogle Scholar
  307. Yao AV, Bochow H, Karimov S, Boturov U, Sanginboy S, Sharipov AK (2006) Effect of FZB 24® Bacillus subtilis as a biofertilizer on cotton yields in field tests. Arch Phytopathol Plant Prot 39:323–328CrossRefGoogle Scholar
  308. Yao T, Yasmin S, Hafeez FY (2008) Potential role of rhizobacteria isolated from Northwestern China for enhancing wheat and oat yield. J Agric Sci 146:49–56CrossRefGoogle Scholar
  309. Yasmin S, Rahman M, Hafeez FY (2004) Isolation, characterization and beneficial effects of rice associated plant growth promoting bacteria from Zanzibar soils. J Basic Microbiol 44:241–252PubMedCrossRefPubMedCentralGoogle Scholar
  310. Zahir AZ, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168CrossRefGoogle Scholar
  311. Zahir ZA, Asghar HN, Akhtar MJ, Arshad M (2005) Precursor (L-tryptophan)-inoculum (Azotobacter) interaction for improving yields and nitrogen uptake of maize. J Plant Nutr 28:805–817CrossRefGoogle Scholar
  312. Zahir ZA, Munir A, Asghar HN, Arshad M, Shaharoona B (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963PubMedPubMedCentralGoogle Scholar
  313. Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294PubMedCrossRefPubMedCentralGoogle Scholar
  314. Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91(2):143–153PubMedCrossRefPubMedCentralGoogle Scholar
  315. Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ 101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997PubMedCrossRefPubMedCentralGoogle Scholar
  316. Zehnder G, Kloepper JW, Yao C, Wei G, Chambliss O, Shelby R (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera:Chrysomelidae) by plant resistance. Entomol Exp Appl 83:81–85CrossRefGoogle Scholar
  317. Zhang S, Moyne AL, Reddy MS, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296CrossRefGoogle Scholar
  318. Zhang H et al (2003) Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate accumulating microorganism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53:1155–1163PubMedCrossRefPubMedCentralGoogle Scholar
  319. Zhao J, Zhou L, Wub J (2010) Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by polysaccharide–protein fractions of plant growth-promoting rhizobacterium Bacillus cereus. Process Biochem 45:1517–1522CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bhupendra Koul
    • 1
  • Simranjeet Singh
    • 1
  • Daljeet Singh Dhanjal
    • 1
  • Joginder Singh
    • 1
    Email author
  1. 1.Department of Biotechnology, School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraIndia

Personalised recommendations