Advertisement

Application of Arbuscular Mycorrhizae in Soil Management

  • Rajni SinghEmail author
  • Neha Sharma
Chapter

Abstract

An arbuscular mycorrhizae (AM) fungus associates with plant by penetrating the root cells and enabling the plants to use various nutrients present in the soil. AM fungi help plants in phosphate absorption, and plants provide nutrition support to the fungus in the form of hexoses. Recently, in the presence of AM fungi, the degradation of organic pollutants and metals has been observed, and AM bioremediation is also a relevant technique for remediation of contamination sites. There are three types of bioremediation: microbial, mycoremediation, and phytoremediation. Among this, phytoremediation is most common. It involves degradation of the toxicants, and those toxicants are accumulated in the plants (which is called phytoextraction) from the soil or the toxicants can be converted into a nontoxic form and immobilized in the root surface (phytostabilization). AMF association with the plants can be explored in remediation of organic pollutants, sites which are polluted by heavy metals, radionuclides, PAH-polluted soils, and bioassay for soil pollution.

Keywords

Arbuscular mycorrhiza Mycoremediation Degradation Bioremediation Phytostabilization 

References

  1. Azcón-Aguilar C, Bago B, Barea JM (1999) Saprophitic growth of AMF. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin, pp 391–407CrossRefGoogle Scholar
  2. Bartolome-Esteban H, Schenck NC (1994) Spore germination and hyphal growth of arbuscular mycorrhizal fungi in relation to soil aluminum saturation. Mycologia 86:217–226CrossRefGoogle Scholar
  3. Binet P, Portal JM, Leyval C (2000) Fate of polycyclic aromatic hydrocarbons in rhizosphere and mycorrhizae of ryegrass. Plant Soil 227:207–213CrossRefGoogle Scholar
  4. Chen BD, Christie P, Li XL (2001) A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere 42:185–192CrossRefGoogle Scholar
  5. Chen BD, Roos P, Zhu YG, Jakobsen I (2008) Arbuscular mycorrhizas contribute to phyto stabilization of uranium in uranium mining tailings. J Environ Radioact 99:801–810CrossRefGoogle Scholar
  6. Cornejo P, Meier S, Garcia S, Ferrol N, Duran P, Borie F, Seguel A (2017) Contribution of inoculation with arbuscular mycorrhizal fungi to the bioremediation of a copper contaminated soil using Oenothera picensis. J Soil Sci Plant Nutr 17:14–21Google Scholar
  7. Dauber J, Niechoj R, Baltruschat H, Wolters V (2008) Soil engineering ants increase grass root arbuscular mycorrhizal colonization. Biol Fertil Soils 44:791–796CrossRefGoogle Scholar
  8. Dighton J, Clint GT, Poskit JM (1991) Uptake and accumulation of Cs by upland grassland soil fungi, potential pool of Cs immobilization. Mycol Res 95:1052–1056CrossRefGoogle Scholar
  9. Fabisiak JP, Pearce LL, Borisenko GG, Tyhurina YY, Tyurin VA, Razzack J, Lazo JS, Pitt BR, Kagan VE (1999) Bifunctional anti/proxidant potential of metallothionein redox signalling of copper binding and release. Antioxid Redox Signal 1:349–364CrossRefGoogle Scholar
  10. Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:115–1126CrossRefGoogle Scholar
  11. Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499CrossRefGoogle Scholar
  12. Giovannetti M, Sbrana C, Avio L, Cisternesi AS, Logi C (1993) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol 125:587–593CrossRefGoogle Scholar
  13. Gonzalez-Chavez MC, Carillo-Gonzalez R, Wright SF, Nicholas KA (2004) The role of Glomalin, a protein produced by arbuscular mycorrhizal fungi in sequestering potentially toxic elements. Environ Pollut 130:317–323CrossRefGoogle Scholar
  14. Günther A, Bernhard G, Geipel G, Reich T, Rossberg A, Nitsche H (2003) Uranium speciation in plants. Radiochim Acta 91:319–328CrossRefGoogle Scholar
  15. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  16. Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soilborne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157CrossRefGoogle Scholar
  17. Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234CrossRefGoogle Scholar
  18. Kaldorf M, Kuhn AJ, Schrodar WH (1999) Selective elements deposits in maize colonized by heavy metal tolerance. Plant Physiol 154:718–728CrossRefGoogle Scholar
  19. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301CrossRefGoogle Scholar
  20. Leyval C, Turnau K, Haselwandter K (1997) Interactions between heavy metals and mycorrhizal fungi in polluted soils. Physiological, ecological and applied aspects. Mycorrhiza 7:139–153CrossRefGoogle Scholar
  21. Pawlowska TE, Douds DD, Charvat I (1999) In vitro propagation and life cycle of the arbuscular mycorrhizal fungus Glomus etunicatum. Mycol Res 103:1549–1556CrossRefGoogle Scholar
  22. Saenen E, Horemans N, Vanhoudt N, Vandenhove H, Biermans G, Van Hees M et al (2013) Effects of pH on uranium uptake and oxidative stress responses induced in Arabidopsis thaliana. Environ Toxicol Chem 32:2125–2133CrossRefGoogle Scholar
  23. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Amity Institute of Microbial BiotechnologyAmity University Uttar PradeshNoidaIndia

Personalised recommendations