Advertisement

Omics Data Integration in Microbial Research for Agricultural and Environmental Applications

  • Dhananjaya Pratap SinghEmail author
  • Ratna Prabha
Chapter

Abstract

Essentiality of omics research clubbed with the bioinformatics data analysis has been perceived in a long time for the advancement of science and innovation. Bioinformatics finds a direct application in the crop improvement programs. The availability of complete genomes of microbial species, economically important crops, animals, and the whole environment (metagenomes) facilitated high-throughput studies for the opening of new avenues to improve crop programs. Different approaches, such as microbial and plant genome comparisons, genetic mapping strategies, and evolutionary analyses, involved in crop development programs are possible through bioinformatics data analysis. New genes, novel proteins and their functions, unique metabolites and their quantitative profile, and metabolic pathways generated from microbes, plants, and animals seemed to have yielded much expected values in terms of new targets or strategies for the development of crop plants in agriculture. Recent work on this subject helped us in dealing with such issues realistically and optimistically in a socially responsible way. Omics-aided research in microbial and plant sciences genuinely help us to consider that people are exploring novel scientific and technological systems to improve human health, human food and animal feed production, overall agricultural productivity, and environmental protection.

Keywords

Omics data Agriculture Bioinformatics Microorganisms Metagenomes Genomics Transcriptomics Proteomics Systems biology 

Notes

Acknowledgments

DPS is thankful to ICAR, India, for the funding support in terms of “Network Project on Bioinformatics in Agriculture.” RP is thankful to the Science & Engineering Research Board (SERB) for the financial support in terms of SERB National Post Doctoral Fellowship (Fellowship Reference No.: PDF/2016/000714).

References

  1. Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929.  https://doi.org/10.1007/s00248-009-9531-yCrossRefPubMedGoogle Scholar
  2. Agarwal R, Narayan J (2015) Unraveling the impact of bioinformatics and omics in agriculture. Int J Plant Biol Res 3:1039Google Scholar
  3. Aislabie J, Deslippe JR (2013) Soil microbes and their contribution to soil services. In: Dymond JR (ed) Ecosystem services in New Zealand – conditions and trends. Manaaki Whenua Press, LincolnGoogle Scholar
  4. Andolfo G, Ruocco M, Di Donato A, Frusciante L, Scala F, Ercolano MR (2015) Genetic variability and evolutionary diversification of membrane ABC transporters in plants. BMC Plant Biol 15:51.  https://doi.org/10.1186/s12870-014-0323-2CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arvidsson S, Perez-Rodriguez P, Mueller-Roeber B (2011) A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytol 191:895–907.  https://doi.org/10.1111/j.1469-8137.2011.03756.xCrossRefPubMedGoogle Scholar
  6. Ashraf M (2010) Inducing drought tolerance in plants : recent advances. Biotechnol Adv 28:169–183PubMedCrossRefGoogle Scholar
  7. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543.  https://doi.org/10.1093/jxb/ers100CrossRefPubMedGoogle Scholar
  8. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baker M (2005) Better living through microbes. Nat Biotechnol 23:645–647PubMedCrossRefGoogle Scholar
  10. Baldrian P, López-Mondéjar R (2014) Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods. Appl Microbiol Biotechnol 98:1531–1537.  https://doi.org/10.1007/s00253-013-5457-x. Epub 2014 Jan 3CrossRefPubMedGoogle Scholar
  11. Bansal AK (2005) Bioinformatics in microbial biotechnology – a mini review. Microb Cell Factories 4:19CrossRefGoogle Scholar
  12. Barga R, Howe B, Beck D, Bowers S, Dobyns W, Haynes W, Higdon R, Howard C, Roth C, Stewart E, Welch D, Kolker E (2011) Bioinformatics and data-intensive scientific discovery in the beginning of the 21st century. OMICS 15:199–201PubMedCrossRefGoogle Scholar
  13. Barret M, Morrissey JP, O’Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47:729–743CrossRefGoogle Scholar
  14. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377.  https://doi.org/10.1111/j.1461-0248.2011.01736.xCrossRefPubMedPubMedCentralGoogle Scholar
  15. Birthal PS (2013) Application of frontier technologies for agricultural development. Indian J Agric Econ 68(1):20–38Google Scholar
  16. Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273PubMedPubMedCentralCrossRefGoogle Scholar
  17. Blake VC, Clay B, Matthews DE, Hane DL, Peter B, Jean-Luc J (2016) The Triticeae toolbox: combining phenotype and genotype data to advance small-grains breeding. Plant Genome 9Google Scholar
  18. Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms – getting genomics going. Curr Opin Plant Biol 9:180–188PubMedCrossRefGoogle Scholar
  19. Brown ME, Funk CC (2008) Food security under climate change. Science 319:580–581PubMedCrossRefGoogle Scholar
  20. Brown ED, Wright GD (2005) New targets and screening approaches in antimicrobial drug discovery. Chem Rev 105:759–774PubMedCrossRefGoogle Scholar
  21. Brozynska M, Omar ES, Furtado A, Crayn D, Simon B, Ishikawa R, Henry RJ (2014) Chloroplast genome of novel rice germplasm identified in northern Australia. Trop Plant Biol 7:111–120PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14:1070–1085PubMedCrossRefGoogle Scholar
  23. Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087CrossRefGoogle Scholar
  24. Carey J (2016) News feature: crucial role of belowground biodiversity. Proc Natl Acad Sci U S A 113:7682–7685.  https://doi.org/10.1073/pnas.1609238113CrossRefPubMedPubMedCentralGoogle Scholar
  25. Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4:287–291.  https://doi.org/10.1038/nclimate2153CrossRefGoogle Scholar
  26. Chan K-G, Chong T-M, Adrian T-G-S, Kher HL, Hong K-W, Grandclément C et al (2015) Whole-genome sequence of Stenotrophomonas maltophilia ZBG7B reveals its biotechnological potential. Genome Announc 3:e01442–15PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489.  https://doi.org/10.1007/s00374-012-0691-4CrossRefGoogle Scholar
  28. Chen K, Pachter L (2005) Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 1(2):e24.  https://doi.org/10.1371/journal.pcbi.0010024CrossRefPubMedCentralPubMedGoogle Scholar
  29. Chen C, Zhou P, Choi YA, Huang S, Gmitter FG Jr (2006) Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet 112:1248–1257PubMedCrossRefGoogle Scholar
  30. Chen J, Agrawal V, Rattray M, West MAL, Clair DAS, Michelmore RW et al (2007) A comparison of microarray and MPSS technology platforms for expression analysis of Arabidopsis. BMC Genomics 8:414PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chen D, Chen M, Altmann T, Klukas C (2014a) Chapter 11: Bridging genomics and phenomics. In: Chen M, Hofestädt R (eds) Approaches in integrative bioinformatics: towards the virtual cell. Springer, BerlinCrossRefGoogle Scholar
  32. Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T et al (2014b) Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell 26:4636–4655.  https://doi.org/10.1105/tpc.114.129601CrossRefPubMedPubMedCentralGoogle Scholar
  33. Clepet C, Joobeur T, Zheng Y, Jublot V, Huang M, Truniger V, Boualem A, Hernandez-Gonzalez ME, Dolcet-Sanjuan R, Portnoy V, Mascarell-Creus A, Caño-Delgado AI, Katzir N, Bendahmane A, Giovannoni JJ, Aranda MA, Garcia-Mas J, Fei Z (2011) Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics 12:252.  https://doi.org/10.1186/1471-2164-12-252CrossRefPubMedPubMedCentralGoogle Scholar
  34. Cossins D (2014) Plant talk. The Scientists. January Issue. http://www.the-scientist.com/?articles.view/articleNo/38727/title/Plant-Talk/
  35. Cragg GM, Newman DJ (2014) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830(6):3670–3695.  https://doi.org/10.1016/j.bbagen.2013.02.008CrossRefGoogle Scholar
  36. Crowther TW et al (2015) Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad Sci U S A 112(22):7033–7038PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dalziel AC, Roggers SM, Schute PM (2009) Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology. Mol Ecol 18:4997–5017PubMedCrossRefPubMedCentralGoogle Scholar
  38. Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478.  https://doi.org/10.1038/nrmicro1160CrossRefPubMedPubMedCentralGoogle Scholar
  39. De-la-Peña C, Loyola-Vargas VM (2014) Biotic interactions in the rhizosphere: a diverse cooperative enterprise for plant productivity. Plant Physiol 166:701–719.  https://doi.org/10.1104/pp.114.241810CrossRefPubMedPubMedCentralGoogle Scholar
  40. Delile J, Herrmann M, Peyriéras N, Doursat R (2016) A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation. Nat Commun 8, Article number: 13929.  https://doi.org/10.1038/ncomms13929
  41. DeLong EF (2013) Methods in enzymology. In: Microbial metagenomics, metatranscriptomics, and metaproteomics. Academic (Elsevier), Dordrecht. ISBN: 978-0-12-407863-5 ISSN: 0076-6879Google Scholar
  42. Dennis ES, Ellis J, Green A, Llewellyn D, Morell M, Tabe L, Peacock WJ (2008) Genetic contributions to agricultural sustainability. Philos Trans R Soc Lond Ser B Biol Sci 363:591–609.  https://doi.org/10.1098/rstb.2007.2172CrossRefGoogle Scholar
  43. Dong X, Yi H, Lee J, Nou I-S, Han C-T, Hur Y (2015) Global gene-expression analysis to identify differentially expressed genes critical for the heat stress response in Brassica rapa. PLoS One 10(6):e0130451.  https://doi.org/10.1371/journal.pone.0130451CrossRefPubMedPubMedCentralGoogle Scholar
  44. Du Z, Zhou X, Ling Y, Zhang ZH, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70PubMedPubMedCentralCrossRefGoogle Scholar
  45. Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149(1):7–13.  https://doi.org/10.1104/pp.108.130195CrossRefPubMedPubMedCentralGoogle Scholar
  46. Edwards D (2013) Bioinformatics tools to assist breeding for climate change. In: Kole C (ed) Genomics and breeding for climate-resilient crops. Springer, Berlin, pp 391–414CrossRefGoogle Scholar
  47. Edwards MA, Henry RJ (2011) DNA sequencing methods contributing to new directions in cereal research. J Cereal Sci 54:395–400CrossRefGoogle Scholar
  48. Ehrhardt DW, Frommer WB (2012) New technologies for 21st century plant science. Plant Cell 24:374–394PubMedPubMedCentralCrossRefGoogle Scholar
  49. Elferink M, Schierhorn F (2016) Global demand for food is rising. Can we meet it? Harvard Business School. https://hbr.org/2016/04/global-demand-for-food-is-rising-can-we-meet-it
  50. Emma-Okafor, Chinenye L, Ibeawuchi, Innocent I, Chiedozie OJ (2010) Biodiversity conservation for sustainable agriculture in tropical rainforest of Nigeria. N Y Sci J 3:81–88Google Scholar
  51. Emon JMV (2016) The omics revolution in agricultural research. J Agric Food Chem 64(1):36–44PubMedCrossRefPubMedCentralGoogle Scholar
  52. Epelde L, Becerril JM, Barrutia O, González-Oreja JA, Garbisu C (2010) Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environ Pollut 158:1576–1583.  https://doi.org/10.1016/j.envpol.2009.12.013CrossRefPubMedPubMedCentralGoogle Scholar
  53. Esch M, Chen J, Colmsee C, Klapperstück M, Grafahrend-Belau E, Scholz U, Lange M (2014) LAILAPS: the plant science search engine. Plant Cell Physiol 56:e8.  https://doi.org/10.1093/pcp/pcu185CrossRefPubMedPubMedCentralGoogle Scholar
  54. Esposito A, Colantuono C, Ruggieri V, Chiusano ML (2016) Bioinformatics for agriculture in the next-generation sequencing era. Chem Biol Technol Agric 3:9CrossRefGoogle Scholar
  55. Faccioli P, Stanca AM, Morcia C, Terzi V (2009) From DNA sequence to plant phenotype: bioinformatics meets crop science. Curr Bioinforma 4(3):173–176CrossRefGoogle Scholar
  56. FAO (2010) Biodiversity for food and agriculture: contributing to food security and sustainability in a changing world OutCOmes of an expert Workshop held by FAO and the platform on Agrobiodiversity Research. From 14–16 April 2010 Rome, ItalyGoogle Scholar
  57. Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12(9):1193–1206.  https://doi.org/10.1111/pbi.12279CrossRefPubMedPubMedCentralGoogle Scholar
  58. Feng S, Wang X, Zhang X, Dang PM, Holbrook CC, Culbreath AK, Wu Y, Guo B (2012) Peanut (Arachis hypogaea) expressed sequence tag project: progress and application. Comp Funct Genomics 2012:1–9. Article ID 373768.  https://doi.org/10.1155/2012/373768CrossRefGoogle Scholar
  59. Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, Bombarely A, Fisher-York T, Pujar A, Foerster H, Yan A, Mueller LA (2015) The SoI genomics network (SGN)–from genotype to phenotype to breeding. Nucleic Acids Res 43(Database issue):D1036–D1041.  https://doi.org/10.1093/nar/gku1195CrossRefPubMedPubMedCentralGoogle Scholar
  60. Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fletcher J, Bender C, Budowle B, Cobb WT, Gold SE, Ishimaru CA et al (2006) Plant pathogen forensics: capabilities, needs, and recommendations. Microbiol Mol Biol Rev 70(2):450–471PubMedPubMedCentralCrossRefGoogle Scholar
  62. Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222.  https://doi.org/10.1093/jxb/erq152CrossRefPubMedGoogle Scholar
  63. Flint J, Mott R (2001) Finding the molecular basis of quantitative traits: successes and pitfalls. Nat Rev Genet 2:437–445PubMedCrossRefGoogle Scholar
  64. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS et al (2011) Solutions for a cultivated planet. Nature 478:337–342PubMedCrossRefPubMedCentralGoogle Scholar
  65. Fucile G, Falconer S, Christendat D (2008) Evolutionary diversification of plant shikimate kinase gene duplicates. PLoS Genet 4:e1000292.  https://doi.org/10.1371/journal.pgen.1000292CrossRefPubMedPubMedCentralGoogle Scholar
  66. Fujisaka S, Williams D, Halewood M (2011) The impact of climate change on countries’ interdependence on genetic resources for food and agriculture. Commission on genetic resources for food and agriculture, Background Study Paper No. 48. FAO, RomeGoogle Scholar
  67. Galbraith DW (2011) Frontiers in genomic assay technologies: the grand challenges in enabling data-intensive biological research. Front Genet 2:26.  https://doi.org/10.3389/fgene.2011.00026CrossRefPubMedPubMedCentralGoogle Scholar
  68. Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M (2016) Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 6:19228.  https://doi.org/10.1038/srep19228CrossRefPubMedPubMedCentralGoogle Scholar
  69. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15. Article ID 963401.  https://doi.org/10.6064/2012/963401CrossRefGoogle Scholar
  70. Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D et al (2011) The iPlant collaborative: cyberinfrastructure for plant biology. Front Plant Sci 2:34.  https://doi.org/10.3389/fpls.2011.00034CrossRefPubMedPubMedCentralGoogle Scholar
  71. Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int 2015:431487PubMedPubMedCentralGoogle Scholar
  72. Gray J (2009) Jim Gray on eScience: a transformed scientific method. In: Hey T, Tansley S, Tolle K (eds) The fourth paradigm: data-intensive scientific discovery. Microsoft Research, Redmond, pp xvii–xxxiGoogle Scholar
  73. Green RE (2005) Farming and the fate of wild nature. Science 307(5709):550–555CrossRefGoogle Scholar
  74. Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307(5709):550–555CrossRefGoogle Scholar
  75. Greene AC, Giffin KA, Greene CS, Moore JH (2015) Adapting bioinformatics curricula for big data. Brief Bioinform 17(1):43–50PubMedPubMedCentralCrossRefGoogle Scholar
  76. Großkinsky DK, Svensgaard J, Christensen S, Roitsch T (2015) Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J Exp Bot 66:5429–5440PubMedCrossRefGoogle Scholar
  77. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685PubMedPubMedCentralCrossRefGoogle Scholar
  78. Harris J (2009) Soil microbial communities and restoration ecology: facilitators or followers? Science 325(5940):573–574PubMedCrossRefGoogle Scholar
  79. Hassani-Pak K, Castellote M, Esch M, Hindle M, Lysenko A, Taubert J, Rawlings C (2016) Developing integrated crop knowledge networks to advance candidate gene discovery. Appl Transl Genomics 11:18–26CrossRefGoogle Scholar
  80. Hayat R, Ali S, Amara U, Khalid R, Ahmad I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579.  https://doi.org/10.1007/s13213-010-0117-1CrossRefGoogle Scholar
  81. Henry RJ (2014a) Sequencing crop wild relatives to support the conservation and utilization of plant genetic resources. Plant Genet Resour C 12:S9–S11CrossRefGoogle Scholar
  82. Henry RJ (2014b) Genomics strategies for germplasm characterization and the development of climate resilient crops. Front Plant Sci 5:68PubMedPubMedCentralCrossRefGoogle Scholar
  83. Hu B, Xie G, Lo CC, Starkenburg SR, Chain PS (2011) Pathogen comparative genomics in the next-generation sequencing era: genome alignments, pangenomics and metagenomics. Brief Funct Genomics 6:322–333CrossRefGoogle Scholar
  84. Hu J, Rampitsch C, Bykova NV (2015) Advances in plant proteomics toward improvement of crop productivity and stress resistancex. Front Plant Sci 6:209PubMedPubMedCentralGoogle Scholar
  85. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281.  https://doi.org/10.1038/ng.475CrossRefPubMedGoogle Scholar
  86. Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275CrossRefGoogle Scholar
  87. Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10(8):3371–3399.  https://doi.org/10.3390/ijms10083371CrossRefPubMedPubMedCentralGoogle Scholar
  88. Jackson S (2006) Comparative sequencing of plant genomes: choices to make. Plant Cell 18:1100–1104.  https://doi.org/10.1105/tpc.106.042192CrossRefPubMedPubMedCentralGoogle Scholar
  89. Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7:391–403.  https://doi.org/10.1038/nrm1939CrossRefPubMedGoogle Scholar
  90. Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. In: Kole C et al (eds) Transgenic crop plants. Springer-Verlag, Berlin/HeidelbergGoogle Scholar
  91. Jiang S-Y, Ma A, Ramamoorthy R, Ramachandran S (2013) Genome-wide survey on genomic variation, expression divergence, and evolution in two contrasting rice genotypes under high salinity stress. Genome Biol Evol 5:2032–2050.  https://doi.org/10.1093/gbe/evt152CrossRefPubMedPubMedCentralGoogle Scholar
  92. Jung G (2007) Combinatorial biosynthesis of microbial metabolites. In: Bechthold A, Fernández JAS (eds) Combinatorial chemistry: synthesis, analysis and screening. WILEY-VCH Verlag GmbH, Weinheim.  https://doi.org/10.1002/9783527613502.ch12CrossRefGoogle Scholar
  93. Kawasaki S, Borcherta C, Deyholos M, Wanb H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905.  https://doi.org/10.1105/tpc.13.4.889CrossRefPubMedPubMedCentralGoogle Scholar
  94. Kesavan PC, Swaminathan MS (2008) Strategies and models for agricultural sustainability in developing Asian countries. Philos Trans R Soc Lond Ser B Biol Sci 363:877–891.  https://doi.org/10.1098/rstb.2007.2189CrossRefGoogle Scholar
  95. Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos Trans R Soc Lond Ser B Biol Sci 363:685–701.  https://doi.org/10.1098/rstb.2007.2178CrossRefGoogle Scholar
  96. Kim K, Jiang K, Teng SL, Feldman LJ, Huang H (2012) Using biologically interrelated experiments to identify pathway genes in Arabidopsis. Bioinformatics 28:815–822.  https://doi.org/10.1093/bioinformatics/bts038CrossRefPubMedPubMedCentralGoogle Scholar
  97. Kim E, Moore BS, Yoon YJ (2015) Reinvigorating natural product combinatorial biosynthesis with synthetic biology. Nat Chem Biol 11:649–659.  https://doi.org/10.1038/nchembio.1893CrossRefPubMedPubMedCentralGoogle Scholar
  98. Kong AYY, Scow KM, Córdova-Kreylos LA, Holmes WE, Six J (2011) Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biol Biochem 43:20–30PubMedPubMedCentralCrossRefGoogle Scholar
  99. Koonin EV (2012) The logic of chance: the nature and origin of biological evolution. Pearson Education, Inc, Upper Saddle RiverGoogle Scholar
  100. Krishnan S, Waters DLE, Katiyar SK, Sadananda AR, Satyadev V, Henry R (2012) Genome-wide DNA polymorphisms in elite indica rice inbreds discovered by whole-genome sequencing. Plant Biotechnol J 1:623–634Google Scholar
  101. Kuhl JC, Cheung F, Yuan Q, Martin W, Zewdie Y, McCallum J, Catanach A, Rutherford P, Sink KC, Jenderek M, Prince JP, Town CD, Havey MJ (2004) A unique set of 11,008 onion expressed sequence tags reveals expressed sequence and genomic differences between the monocot orders Asparagales and PoalesW. Plant Cell 16:114–125.  https://doi.org/10.1105/tpc.017202CrossRefPubMedPubMedCentralGoogle Scholar
  102. Kuhlisch C, Pohnert G (2015) Metabolomics in chemical ecology. Nat Prod Rep 2015(32):937–955.  https://doi.org/10.1039/C5NP00003CCrossRefGoogle Scholar
  103. Kumar N et al (2015) Bacterial genospecies that are not ecologically coherent: population genomics of rhizobium leguminosarum. Open Biol 5:Unsp 140133.  https://doi.org/10.1098/Rsob.140133CrossRefGoogle Scholar
  104. Lai K, Lorenc MT, Edwards D (2012) Genomic databases for crop improvement. Agronomy 2:62–73CrossRefGoogle Scholar
  105. Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29:33–40.  https://doi.org/10.1016/j.tibtech.2010.09.006CrossRefPubMedGoogle Scholar
  106. Lareen A, Burton F, Schafer P (2016) Plant-root microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587.  https://doi.org/10.1007/s11103-015-0417-8CrossRefPubMedPubMedCentralGoogle Scholar
  107. Larsen PE, Collart FR, Dai Y (2015) Predicting ecological role in the rhizosphere using metabolome and transcriptome modeling. PLoS One 10(9):e0132837.  https://doi.org/10.1371/journal.pone.0132837CrossRefPubMedPubMedCentralGoogle Scholar
  108. Leegood RC, Evans JR, Furbank RT (2010) Food security requires genetic advances to increase farm yields. Nature 464:831PubMedCrossRefGoogle Scholar
  109. Li LH, Qiu XH, Li XH, Wang SP, Zhang QF, Lian XM (2010) Transcriptomic analysis of rice responses to low phosphorus stress. Chin Sci Bull 55:251–258CrossRefGoogle Scholar
  110. Liang C, Jaiswal P, Hebbard C, Avraham S, Buckler ES, Casstevens T, Hurwitz B, McCouch S, Ni J, Pujar A, Ravenscroft D, Ren L, Spooner W, Tecle I, Thomason J, Tung CW, Wei X, Yap I, Youens-Clark K, Ware D, Stein L (2008) Gramene: a growing plant comparative genomics resource. Nucleic Acids Res 36(Database issue):D947–D953PubMedGoogle Scholar
  111. Liekens AML, De Knijf J, Walter D, Bart G, De Rijk P, Jurgen D-F (2011) BioGraph: unsupervised biomedical knowledge discovery via automated hypothesis generation. Genome Biol 12:R57PubMedPubMedCentralCrossRefGoogle Scholar
  112. Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J (2008) Rules of engagement: interspecies interactions that regulate microbial communities. Annu Rev Microbiol 62:375–401.  https://doi.org/10.1146/annurev.micro.030608.101423CrossRefPubMedGoogle Scholar
  113. Ma Y, Qin F, Tran LP (2012) Contribution of genomics to gene discovery in plant abiotic stress responses. Mol Plant 5(6):1176–1178PubMedCrossRefGoogle Scholar
  114. Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577PubMedCrossRefGoogle Scholar
  115. Mahalakshmi V, Ortiz R (2001) Plant genomics and agriculture: from model organisms to crops, the role of data mining for gene discovery. EJB Electron J Biotechnol 4(2):9–10Google Scholar
  116. Mahesh HB, Shirke MD, Singh S, Rajamani A, Hittalmani S, Wang G-L, Gowda M (2016) Indica rice genome assembly, annotation and mining of blast disease resistance genes. BMC Genomics 17:242.  https://doi.org/10.1186/s12864-016-2523-7CrossRefPubMedPubMedCentralGoogle Scholar
  117. Martin WJ, McCallum J, Shigyo S, Jakse J, Kuhl JC, Yamane N, Pither-Joyce M, Gokce AF, Sink KC, Town CD, Havey MJ (2005) Genetic mapping of expressed sequences in onion and in silico comparisons with rice show scant colinearity. Mol Gen Genomics 274:197–204CrossRefGoogle Scholar
  118. Marx V (2013) Biology: the big challenges of big data. Nature 498:255–260PubMedCrossRefGoogle Scholar
  119. Mba C, Guimaraes EP, Ghosh K (2012) Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agric Food Sec 1:7.  https://doi.org/10.1186/2048-7010-1-7CrossRefGoogle Scholar
  120. Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172.  https://doi.org/10.3389/fpls.2017.00172CrossRefPubMedPubMedCentralGoogle Scholar
  121. Mehboob-ur-Rahman, Shaheen T, Mahmood-ur-Rahman, Iqbal MA, Zafar Y (2016) Bioinformatics: a way forward to explore “plant omics”. In: Abdurakhmonov IY (ed) Bioinformatics – updated features and applications. InTech, CroatiaGoogle Scholar
  122. Mehmood MA, Sehar U, Ahmad N (2014) Use of bioinformatics tools in different spheres of life sciences. J Data Min Genomics Proteomics 5:158Google Scholar
  123. Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852.  https://doi.org/10.1038/nrg3605CrossRefPubMedGoogle Scholar
  124. Microbe Project (2001) National Science & Technology Council, Washington DC, 29ppGoogle Scholar
  125. Milshteyn A, Schneider JS, Brady SF (2014) Mining the metabiome: identifying novel natural products from microbial communities. Chem Biol 21:1211–1223.  https://doi.org/10.1016/j.chembiol.2014.08.006CrossRefPubMedPubMedCentralGoogle Scholar
  126. Minh-Thu PT, Hwang DJ, Jeon JS, Nahm BH, Kim YK (2013) Transcriptome analysis of leaf and root of rice seedling to acute dehydration. Rice 6:38PubMedPubMedCentralCrossRefGoogle Scholar
  127. Miteva YV, Budayeva HG, Cristea IM (2013) Proteomics-based methods for discovery, quantification, and validation of protein-protein interactions. Anal Chem 85:749–768PubMedCrossRefGoogle Scholar
  128. Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51(4):497–523PubMedPubMedCentralCrossRefGoogle Scholar
  129. Mochida K, Saisho D, Yoshida T, Sakurai T, Shinozaki K (2008) TriMEDB: a database to integrate transcribed markers and facilitate genetic studies of the tribe Triticeae. BMC Plant Biol 8:72PubMedPubMedCentralCrossRefGoogle Scholar
  130. Mukherjee P, Roy P (2016) Genomic potential of stenotrophomonas maltophilia in bioremediation with an assessment of its multifaceted role in our environment. Front Microbiol 7:967.  https://doi.org/10.3389/fmicb.2016.00967CrossRefPubMedPubMedCentralGoogle Scholar
  131. Narayanan P (2005) Bioinformatics: a primer. New Age International, New Delhi, p 2. ISBN: 978-81-224-1610-7Google Scholar
  132. Ni J, Pujar A, Youens-Clark K, Yap I, Jaiswal P, Tecle I et al (2009) Gramene QTL database: development, content and applications. Database (Oxford) 2009:bap005CrossRefGoogle Scholar
  133. Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800.  https://doi.org/10.1007/s00122-004-1685-xCrossRefPubMedPubMedCentralGoogle Scholar
  134. Nunez-Palenius HG, Gomez-Lim M, Ochoa-Alejo N, Grumet R, Lester G, Cantliffe DJ (2008) Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol 28:13–55.  https://doi.org/10.1080/07388550801891111CrossRefPubMedPubMedCentralGoogle Scholar
  135. Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–437PubMedPubMedCentralCrossRefGoogle Scholar
  136. Parry MA, Hawkesford MJ (2012) An integrated approach to crop genetic improvement. J Integr Plant Biol 54:250–259.  https://doi.org/10.1111/j.1744-7909.2012.01109.xCrossRefPubMedPubMedCentralGoogle Scholar
  137. Paterson AH (2006) Leafing through the genomes of our major crop plants: strategies for capturing unique information. Nat Rev Genet 7:174–184.  https://doi.org/10.1038/nrg1806CrossRefPubMedPubMedCentralGoogle Scholar
  138. Paterson AH, Freeling M, Tang H, Wang X (2010) Insights from the comparison of plant genome sequences. Annu Rev Plant Biol 61:349–372PubMedCrossRefPubMedCentralGoogle Scholar
  139. Paustian K et al (2016) Climate-smart soils. Nature 532(7597):49–57PubMedCrossRefPubMedCentralGoogle Scholar
  140. Peng JH, Lapitan NLV (2005) Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics 5:80.  https://doi.org/10.1007/s10142-004-0128-8CrossRefPubMedPubMedCentralGoogle Scholar
  141. Perez IB, Brown PZ (2014) The role of ROS signaling in cross-tolerance: from model to crop. Front Plant Sci 5:754.  https://doi.org/10.3389/fpls.2014.00754CrossRefPubMedPubMedCentralGoogle Scholar
  142. Pérez-de-Castro AM, Vilanova S, Cañizares J, Pascual L, Blanca JM, Díez MJ, Prohens J, Picó B (2012) Application of genomic tools in plant breeding. Curr Genomics 13(3):179–195PubMedPubMedCentralCrossRefGoogle Scholar
  143. Phalan B, Onia M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333(6047):1289–1291PubMedPubMedCentralCrossRefGoogle Scholar
  144. Pichersky E, Gerats T (2011) The plant genome: an evolutionary perspective on structure and function. Plant J 66:1–3PubMedCrossRefGoogle Scholar
  145. Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci U S A 109:12302–12308.  https://doi.org/10.1073/pnas.0912953109CrossRefPubMedPubMedCentralGoogle Scholar
  146. Poisot T, Bever J, Nemri A, Thrall PH, Hochberg ME (2011) A conceptual framework for the evolution of ecological specialisation. Ecol Lett 14:841–851.  https://doi.org/10.1111/j.1461-0248.2011.01645CrossRefPubMedPubMedCentralGoogle Scholar
  147. Prasad KVSK, Abdel-Hameed AAE, Xing D, Reddy ASN (2016) Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress. Sci Rep 6:27021.  https://doi.org/10.1038/srep27021CrossRefPubMedPubMedCentralGoogle Scholar
  148. Proost S, Pattyn P, Gerats T, Van De Peer Y (2011) Journey through the past: 150 million years of plant genome evolution. Plant J 66:58–65PubMedCrossRefGoogle Scholar
  149. Rahaman MM, Chen D, Gillani Z, Klukas C, Chen M (2015) Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front Plant Sci 6:619PubMedPubMedCentralCrossRefGoogle Scholar
  150. Rahendran J, Gunasekaran P (2011) Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res 166:99–110CrossRefGoogle Scholar
  151. Ranjan A, Kumari A, Pandey DM (2015) Annotation of stress-responsive candidate genes in peanut ESTs. Interdiscip Sci 7(2):143–151.  https://doi.org/10.1007/s12539-015-0010-5CrossRefPubMedPubMedCentralGoogle Scholar
  152. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6):e66428.  https://doi.org/10.1371/journal.pone.0066428CrossRefPubMedPubMedCentralGoogle Scholar
  153. Raza K (2010) Application of data mining in bioinformatics. Indian J Comput Sci Eng 1(2):114–118Google Scholar
  154. Robinson GE, Banks JA, Padilla DK, Burggren WW, Cohen CS, Delwiche CF, Funk V, Hoekstra HE, Jarvis ED, Johnson L, Martindale MQ, Martinez del Rio C, Medina M, Salt DE, Sinha S, Specht C, Strange K, Strassmann JE, Swalla BJ, Tomanek L (2010) Empowering 21st century biology. Bioscience 60(11):923–930CrossRefGoogle Scholar
  155. Röling WFM, van Bodegom PM (2014) Toward quantitative understanding on microbial community structure and functioning: a modeling-centered approach using degradation of marine oil spills as example. Front Microbiol 5:125.  https://doi.org/10.3389/fmicb.2014.00125CrossRefPubMedPubMedCentralGoogle Scholar
  156. Schmidt-Dannert C (2015) NextGen microbial natural products discovery. Microb Biotechnol 8:26–28.  https://doi.org/10.1111/1751-7915.12184CrossRefPubMedPubMedCentralGoogle Scholar
  157. Segata N, Boernigen N, Tickle TL, Morgan XC, Garrett WS, Huttenhowera C (2013) Computational meta’omics for microbial community studies. Mol Syst Biol 9:666.  https://doi.org/10.1038/msb.2013.22CrossRefPubMedPubMedCentralGoogle Scholar
  158. Seshadri R, Reeve WG, Ardley JK, Tennessen K, Woyke T, Kyrpides NC, Ivanova NN (2015) Discovery of novel plant interaction determinants from the genomes of 163 root nodule bacteria. Sci Rep 5:16825.  https://doi.org/10.1038/srep16825CrossRefPubMedPubMedCentralGoogle Scholar
  159. Silva DJC (2015) Plant breeding for harmony between modern agriculture production and the environment. Agric Sci 6:87–116Google Scholar
  160. Singh VK, Singh AK, Chand R, Kushwaha C (2011) Role of bioinformatics in agriculture and sustainable development. Int J Bioinforma Res 3(2):221–226CrossRefGoogle Scholar
  161. Singh DP, Prabha R, Rai A, Arora DK (2012) Bioinformatics-assisted microbiological research: trends, developments and upcoming challenges. Am J Bioinforma 1:10–19.  https://doi.org/10.3844/ajbsp.2012.10.19CrossRefGoogle Scholar
  162. Sircar S, Parekh N (2015) Functional characterization of drought-responsive modules and genes in Oryza sativa: a network-based approach. Front Genet 6:256PubMedPubMedCentralCrossRefGoogle Scholar
  163. Smith A, Balazinska M, Baru C, Gomelsky M, Mclennan M, Rose L, Smith B, Stewart E, Kolker E (2011) Biology and data-intensive scientific discovery in the beginning of the 21st century. OMICS 15:209–212PubMedCrossRefPubMedCentralGoogle Scholar
  164. Spalding EP (2009) Computer vision as a tool to study plant development. Methods Mol Biol 553:317–326PubMedCrossRefPubMedCentralGoogle Scholar
  165. Spalding EP (2010) The inside view on plant growth. Nat Methods 7:506–507PubMedCrossRefPubMedCentralGoogle Scholar
  166. Sugawara M et al (2013) Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol 14:R17.  https://doi.org/10.1186/gb-2013-14-2-r17CrossRefPubMedPubMedCentralGoogle Scholar
  167. Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457PubMedCrossRefPubMedCentralGoogle Scholar
  168. Tecle IY, Menda N, Buels RM, van der Knaap E, Mueller LA (2010) solQTL: a tool for QTL analysis, visualization and linking to genomes at SGN database. BMC Bioinf 11:525CrossRefGoogle Scholar
  169. Thao NP, Tran LS (2016) Enhancement of plant productivity in the post-genomics era. Curr Genomics 17(4):295–296.  https://doi.org/10.2174/138920291704160607182507CrossRefPubMedPubMedCentralGoogle Scholar
  170. The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet (2007) National Research Council (US) committee on metagenomics: challenges and functional applications. National Academies Press (US), Washington, DC. https://www.ncbi.nlm.nih.gov/books/NBK54011/Google Scholar
  171. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106(3):411–422PubMedCrossRefPubMedCentralGoogle Scholar
  172. Thomas T, Gilbert J, Meyer M (2012) Metagenomics- a guide from sampling to data analysis. Microb Inf Exp 2:3.  https://doi.org/10.1186/2042-5783-2-3CrossRefGoogle Scholar
  173. Thottathil GP, Jayasekaran K, Othman AS (2016) Sequencing crop genomes: a gateway to improve tropical agriculture. Trop Life Sci Res 27:93–114PubMedPubMedCentralGoogle Scholar
  174. Tian CF et al (2012) Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci U S A 109:8629–8634.  https://doi.org/10.1073/pnas.1120436109CrossRefPubMedPubMedCentralGoogle Scholar
  175. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264PubMedPubMedCentralCrossRefGoogle Scholar
  176. Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412.  https://doi.org/10.1016/j.tplants.2006.06.003CrossRefPubMedGoogle Scholar
  177. Turbé A, Toni AD, Benito P, Lavelle P, Lavelle P, Ruiz N, Van der Putten WH, Labouze E, Mudgal S (2010) Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, ParisGoogle Scholar
  178. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43.  https://doi.org/10.1038/nature02340CrossRefPubMedGoogle Scholar
  179. United Nations, Department of Economic and Social Affairs, Population Division (2015) World population prospects: the 2015 revision, key findings and advance tables, Working Paper No. ESA/P/WP.241. United Nations, New YorkGoogle Scholar
  180. Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195PubMedCrossRefGoogle Scholar
  181. Vassilev D, Leunissen J, Atanassov A, Nenov A, Dimov G (2005) Application of bioinformatics in plant breeding. Biotechnol Biotechnol Equip 19:139–152CrossRefGoogle Scholar
  182. Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5:361–380.  https://doi.org/10.1111/j.1467-7652.2007.00239.xCrossRefPubMedGoogle Scholar
  183. Wagg C, Bender SF, Widmer F, van der Heijden MG (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111(14):5266–5270PubMedPubMedCentralCrossRefGoogle Scholar
  184. Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature 528(7580):69–76PubMedCrossRefGoogle Scholar
  185. Wang W-S, Zhao X-Q, Li M, Huang L-Y, Xu J-L, Zhang F, Cui Y-R, Fu B-Y, Li Z-K (2016) Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. J Exp Bot 67:405–419.  https://doi.org/10.1093/jxb/erv476CrossRefPubMedGoogle Scholar
  186. Weekley J, Gabbard J, Nowak J (2012) Micro-level management of agricultural inputs: emerging approaches. Agronomy 2:321–357CrossRefGoogle Scholar
  187. Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biol 17:37.  https://doi.org/10.1186/s13059-016-0908-1CrossRefPubMedPubMedCentralGoogle Scholar
  188. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579PubMedPubMedCentralCrossRefGoogle Scholar
  189. Wommack KE, Ravel J (2013) Microbiome, demystifying the role of microbial communities in the biosphere. Microbiome 1:1.  https://doi.org/10.1186/2049-2618-1-1CrossRefPubMedPubMedCentralGoogle Scholar
  190. Xu J, Yuan Y, Xu Y, Zhang G, Guo X, Wu F et al (2014) Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biol 14:83PubMedPubMedCentralCrossRefGoogle Scholar
  191. Yamamoto E, Yonemaru J-I, Yamamoto T, Yano M (2012) OGRO: the overview of functionally characterized genes in rice online database. Rice 5:26.  https://doi.org/10.1186/1939-843CrossRefPubMedPubMedCentralGoogle Scholar
  192. Ye SF, Yu SW, Shu SB, Wu JH, Wu AZ, Luo LJ (2012) Expression profile analysis of 9 heat shock protein genes throughout the life cycle and under abiotic stress in rice. Chin Sci Bull 57:336–343CrossRefGoogle Scholar
  193. Yin F, Liu M, Gao J, Zhang W, Qin C, Yang A, Luo C, Liu H, Shen Y, Lin H, Zhang Z, Pan G (2015) Analysis of global gene expression profiles in tobacco roots under drought stress. Open Life Sci 10(1).  https://doi.org/10.1515/biol-2015-0035. ISSN (Online) 2391–5412
  194. Yuriko O, Osakabe K, Shinozaki K, Tran L-SP (2014) Response of plants to water stress. Front Plant Sci 5:86.  https://doi.org/10.3389/fpls.2014.00086CrossRefGoogle Scholar
  195. Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989PubMedCrossRefGoogle Scholar
  196. Zang JP, Sun Y, Wang Y et al (2008) Dissection of genetic overlap of salt tolerance QTLs at the seedling and tillering stages using backcross introgression lines in rice. Sci China Ser C Life Sci 51(7):583–591CrossRefGoogle Scholar
  197. Zengler K (2009) Central role of the cell in microbial ecology. Microbiol Mol Biol Rev 73(4):712–729.  https://doi.org/10.1128/MMBR.00027-09CrossRefPubMedPubMedCentralGoogle Scholar
  198. Zhang C, Zhang L, Zhang S, Zhu S, Wu P, Chen Y, Li M, Jiang H, Wu G (2015) Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to drought stress. BMC Plant Biol 15:17.  https://doi.org/10.1186/s12870-014-0397-xCrossRefPubMedPubMedCentralGoogle Scholar
  199. Zhao XQ, Wang WS, Zhang F, Zhang T, Zhao W, Fu BY, Li ZK (2013) Temporal profiling of primary metabolites under chilling stress and its association with seedling chilling tolerance of rice (Oryza sativa L.). Rice 6:23PubMedPubMedCentralCrossRefGoogle Scholar
  200. Zhou J, Miller JH (2002) Microbial genomics—challenges and opportunities: the 9th International Conference on Microbial Genomes. J Bacteriol 184:4327–4333.  https://doi.org/10.1128/JB.184.16.4327-4333.2002CrossRefPubMedPubMedCentralGoogle Scholar
  201. Zhou J, He Z, Yang Y, Deng Y, Tring SG, Alvarez-Cohen L (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio 6(1):pii: e02288-14.  https://doi.org/10.1128/mBio.02288-14CrossRefGoogle Scholar
  202. Zhulin IB (2015) Databases for microbiologists. J Bacteriol 19:2458–2467CrossRefGoogle Scholar
  203. Zivy M, Wienkoop S, Renaut J, Pinheiro C, Goulas E, Carpentier S (2015) The quest for tolerant varieties: the importance of integrating “omics” techniques to phenotyping. Front Plant Sci 6:448.  https://doi.org/10.3389/fpls.2015.00448CrossRefPubMedPubMedCentralGoogle Scholar
  204. Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X (2009) Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J Plant Physiol 166:851–861PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.ICAR-National Bureau of Agriculturally Important MicroorganismsMaunath BhanjanIndia
  2. 2.Chhattisgarh Swami Vivekananda Technical UniversityBhilaiIndia

Personalised recommendations