Advertisement

Systems and Synthetic Biology Approach to Understand the Importance of Host-Pathogen Interaction

  • Ashish A. Prabhu
  • V. VenkatadasuEmail author
Chapter

Abstract

In this chapter, we have discussed the basic factors required to understand the systems biology of host-pathology interaction, which can be applied for modeling and simulating the interaction between plant and pathogens and to get an idea about drug discovery and metabolic engineering. Further, we highlight the high-throughput technologies, such as omics technologies (genomics, transcriptomics, proteomics, and metabolomics), which can be used as a tool for identifying molecular mechanisms of the cell and biochemical pathway of the host-pathogen system. Several mathematical models, such as genome-scale metabolic modeling (constrain-based modeling) and interaction-based modeling (e.g., gene regulatory networks and protein-protein-based interactions) have been demonstrated which help in understanding the genotypic-phenotypic relationship of the host-pathogen interactions.

Keywords

Systems biology Host-pathogen interactions Omics technology Metabolic modeling 

References

  1. Aderem A et al (2011) A systems biology approach to infectious disease research: innovating the pathogen-host research paradigm. MBio 2(1):e00325–e00310PubMedPubMedCentralCrossRefGoogle Scholar
  2. Antoniewicz MR (2015) Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biotechnol 42(3):317–325PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bose B (2013) Systems biology: a biologist’s viewpoint. Prog Biophys Mol Biol 113(3):358–368PubMedCrossRefPubMedCentralGoogle Scholar
  4. Brown SA, Palmer KL, Whiteley M (2008) Revisiting the host as a growth medium. Nat Rev Microbiol 6(9):657–666PubMedPubMedCentralCrossRefGoogle Scholar
  5. Çalık P, Özdamar TH (2011) Bioreaction network flux analysis for industrial microorganisms: a review. Rev Chem Eng 18(6):553–604Google Scholar
  6. Chae TU, Choi SY, Kim JW, Ko Y-S, Lee SY (2017) Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol 47:67–82PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chai LE, Loh SK, Low ST, Mohamad MS, Deris S, Zakaria Z (2014) A review on the computational approaches for gene regulatory network construction. Comput Biol Med 48:55–65PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chavali AK, D’Auria KM, Hewlett EL, Pearson RD, Papin JA (2012) A metabolic network approach for the identification and prioritization of antimicrobial drug targets. Trends Microbiol 20(3):113–123PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen X, Shachar-Hill Y (2012) Insights into metabolic efficiency from flux analysis. J Exp Bot 63(6):2343–2351PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chen R et al (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148(6):1293–1307PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chuang H-Y, Hofree M, Ideker T (2010) A decade of systems biology. Annu Rev Cell Dev Biol 26:721–744PubMedPubMedCentralCrossRefGoogle Scholar
  12. Colizza V, Flammini A, Maritan A, Vespignani A (2005) Characterization and modeling of protein–protein interaction networks. Phys Stat Mech Appl 352(1):1–27CrossRefGoogle Scholar
  13. Dai Z, Locasale JW (2016) Understanding metabolism with flux analysis: from theory to application. Metab Eng 43:94–102PubMedPubMedCentralCrossRefGoogle Scholar
  14. Das S, Kalpana GV (2009) Reverse two-hybrid screening to analyze protein-protein interaction of HIV-1 viral and cellular proteins. Methods Mol Biol (Clifton NJ) 485:271–293CrossRefGoogle Scholar
  15. de Chassey B et al (2008) Hepatitis C virus infection protein network. Mol Syst Biol 4:230PubMedPubMedCentralCrossRefGoogle Scholar
  16. Deidda M, Piras C, Bassareo PP, Cadeddu Dessalvi C, Mercuro G (2015) Metabolomics, a promising approach to translational research in cardiology. IJC Metab Endocr 9:31–38CrossRefGoogle Scholar
  17. Del Chierico F et al (2014) Proteomics boosts translational and clinical microbiology. J Proteome 97:69–87CrossRefGoogle Scholar
  18. Dorogovtsev SN, Mendes JFF (2002) Evolution of networks. Adv Phys 51(4):1079–1187CrossRefGoogle Scholar
  19. Durmuş S, Çakır T, Özgür A, Guthke R (2015) A review on computational systems biology of pathogen–host interactions. Front Microbiol 6:235PubMedPubMedCentralGoogle Scholar
  20. Durmuş S, Çakır T, Guthke R (2016) Editorial: computational systems biology of pathogen-host interactions. Front Microbiol 7:21PubMedPubMedCentralCrossRefGoogle Scholar
  21. Eisenreich W, Heesemann J, Rudel T, Goebel W (2013) Metabolic host responses to infection by intracellular bacterial pathogens. Front Cell Infect Microbiol 3:24PubMedPubMedCentralCrossRefGoogle Scholar
  22. Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JCD (2003) Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47(1):103–118PubMedCrossRefPubMedCentralGoogle Scholar
  23. Faust K, Croes D, van Helden J (2011) Prediction of metabolic pathways from genome-scale metabolic networks. Biosystems 105(2):109–121PubMedCrossRefPubMedCentralGoogle Scholar
  24. Gardiner DM, Howlett BJ (2005) Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiol Lett 248(2):241–248PubMedCrossRefPubMedCentralGoogle Scholar
  25. Geng J, Nielsen J (2017) In silico analysis of human metabolism: reconstruction, contextualization and application of genome-scale models. Curr Opin Syst Biol 2:29–38CrossRefGoogle Scholar
  26. Gouzy A, Poquet Y, Neyrolles O (2014) Nitrogen metabolism in Mycobacterium tuberculosis physiology and virulence. Nat Rev Microbiol 12(11):729–737PubMedCrossRefPubMedCentralGoogle Scholar
  27. Grafahrend-Belau E, Junker A, Eschenröder A, Müller J, Schreiber F, Junker BH (2013) Multiscale metabolic modeling: dynamic flux balance analysis on a whole-plant scale. Plant Physiol 163(2):637–647PubMedPubMedCentralCrossRefGoogle Scholar
  28. Guttman DS, McHardy AC, Schulze-Lefert P (2014) Microbial genome-enabled insights into plant-microorganism interactions. Nat Rev Genet 15(12):797–813PubMedCrossRefPubMedCentralGoogle Scholar
  29. Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R (2009) Gene regulatory network inference: data integration in dynamic models—a review. Biosystems 96(1):86–103PubMedCrossRefPubMedCentralGoogle Scholar
  30. Ikeuchi M et al (2018) A gene regulatory network for cellular reprogramming in plant regeneration. Plant Cell Physiol 59(4):770–782PubMedCentralCrossRefGoogle Scholar
  31. Karahalil B (2016) Overview of systems biology and omics technologies. Curr Med Chem 23(37):4221–4230PubMedCrossRefPubMedCentralGoogle Scholar
  32. Karahalil B, Kesimci E, Emerce E, Gumus T, Kanbak O (2011) The impact of OGG1, MTH1 and MnSOD gene polymorphisms on 8-hydroxy-2′-deoxyguanosine and cellular superoxide dismutase activity in myocardial ischemia-reperfusion. Mol Biol Rep 38(4):2427–2435PubMedCrossRefPubMedCentralGoogle Scholar
  33. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14(5):491–496PubMedCrossRefPubMedCentralGoogle Scholar
  34. Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 23(4):617–623PubMedCrossRefPubMedCentralGoogle Scholar
  35. Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664PubMedCrossRefPubMedCentralGoogle Scholar
  36. Larance M, Lamond AI (2015) Multidimensional proteomics for cell biology. Nat Rev Mol Cell Biol 16(5):269–280CrossRefGoogle Scholar
  37. Likić VA, McConville MJ, Lithgow T, Bacic A (2010) Systems biology: the next frontier for bioinformatics. Adv Bioinforma 2010:1–10. [Online]. Available: https://www.hindawi.com/journals/abi/2010/268925/. Accessed 08 Sept 2018CrossRefGoogle Scholar
  38. Mardan-Nik M et al (2016) Association of heat shock protein70-2 (HSP70-2) gene polymorphism with obesity. Ann Hum Biol 43(6):542–546PubMedCrossRefPubMedCentralGoogle Scholar
  39. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296(5569):910–913PubMedCrossRefPubMedCentralGoogle Scholar
  40. McCourt CM et al (2013) Validation of next generation sequencing technologies in comparison to current diagnostic gold standards for BRAF, EGFR and KRAS mutational analysis. PLoS One 8(7):e69604PubMedPubMedCentralCrossRefGoogle Scholar
  41. McDermott JE et al (2011) Technologies and approaches to elucidate and model the virulence program of salmonella. Front Microbiol 2:121PubMedPubMedCentralCrossRefGoogle Scholar
  42. Milenbachs AA, Brown DP, Moors M, Youngman P (1997) Carbon-source regulation of virulence gene expression in Listeria monocytogenes. Mol Microbiol 23(5):1075–1085PubMedCrossRefPubMedCentralGoogle Scholar
  43. Mukhtar MS et al (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333(6042):596–601PubMedPubMedCentralCrossRefGoogle Scholar
  44. Niemann GS et al (2011) Discovery of novel secreted virulence factors from Salmonella enterica serovar Typhimurium by proteomic analysis of culture supernatants. Infect Immun 79(1):33–43PubMedCrossRefPubMedCentralGoogle Scholar
  45. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248PubMedPubMedCentralCrossRefGoogle Scholar
  46. Peng X et al (2010) Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling. MBio 1(5):e00206–e00210PubMedPubMedCentralCrossRefGoogle Scholar
  47. Prabhu AA, Veeranki VD, Dsilva SJ (2016) Improving the production of human interferon gamma (hIFN-γ) in Pichia pastoris cell factory: an approach of cell level. Process Biochem 51(6):709–718CrossRefGoogle Scholar
  48. Prabhu AA, Purkayastha A, Mandal B, Kumar JP, Mandal BB, Dasu VV (2017) A novel reverse micellar purification strategy for histidine tagged human interferon gamma (hIFN-γ) protein from Pichia pastoris. Int J Biol Macromol 107:2512–2524PubMedCrossRefPubMedCentralGoogle Scholar
  49. Prabhu AA, Bharali B, Singh AK, Allaka M, Sukumar P, Veeranki VD (2018) Engineering folding mechanism through Hsp70 and Hsp40 chaperones for enhancing the production of recombinant human interferon gamma (rhIFN-γ) in Pichia pastoris cell factory. Chem Eng Sci 181:58–67CrossRefGoogle Scholar
  50. Qian C, Cao X (2013) Regulation of toll-like receptor signaling pathways in innate immune responses. Ann N Y Acad Sci 1283:67–74PubMedCrossRefPubMedCentralGoogle Scholar
  51. Raghunathan A, Reed J, Shin S, Palsson B, Daefler S (2009) Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction. BMC Syst Biol 3:38PubMedPubMedCentralCrossRefGoogle Scholar
  52. Raja K, Patrick M, Gao Y, Madu D, Yang Y, Tsoi LC (2017) A review of recent advancement in integrating omics data with literature mining towards biomedical discoveries. Int J Genomics 2017:1–10. [Online]. Available: https://www.hindawi.com/journals/ijg/2017/6213474/. Accessed 09 Sept 2018CrossRefGoogle Scholar
  53. Raman K, Chandra N (2009) Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 10(4):435–449PubMedCrossRefPubMedCentralGoogle Scholar
  54. Ravasz E, Barabasi A-L (2003) Hierarchical organization in complex networks. Phys Rev E 67(2):026112CrossRefGoogle Scholar
  55. Sarker M, Talcott C, Galande AK (2013) In silico systems biology approaches for the identification of antimicrobial targets. Methods Mol Biol (Clifton NJ) 993:13–30CrossRefGoogle Scholar
  56. Scharf DH, Heinekamp T, Remme N, Hortschansky P, Brakhage AA, Hertweck C (2012) Biosynthesis and function of gliotoxin in Aspergillus fumigatus. Appl Microbiol Biotechnol 93(2):467–472PubMedCrossRefPubMedCentralGoogle Scholar
  57. Shao M, Yang Y, Guan J, Zhou S (2012) A comparison study on protein-protein interaction network models. In: 2012 IEEE International Conference on Bioinformatics and Biomedicine, pp 1–4Google Scholar
  58. Shapira SD et al (2009) A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139(7):1255–1267PubMedPubMedCentralCrossRefGoogle Scholar
  59. Shi L et al (2006) Proteomic analysis of Salmonella enterica serovar typhimurium isolated from RAW 264.7 macrophages: identification of a novel protein that contributes to the replication of serovar typhimurium inside macrophages. J Biol Chem 281(39):29131–29140PubMedCrossRefPubMedCentralGoogle Scholar
  60. Thompson D, Regev A, Roy S (2015) Comparative analysis of gene regulatory networks: from network reconstruction to evolution. Annu Rev Cell Dev Biol 31:399–428PubMedCrossRefPubMedCentralGoogle Scholar
  61. Varala K et al (2018) Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc Natl Acad Sci 115:6494–6499PubMedCrossRefPubMedCentralGoogle Scholar
  62. Vijesh N, Chakrabarti SK, Sreekumar J (2013) Modeling of gene regulatory networks: a review. J Biomed Sci Eng 06:223CrossRefGoogle Scholar
  63. Wright PC, Noirel J, Ow S-Y, Fazeli A (2012) A review of current proteomics technologies with a survey on their widespread use in reproductive biology investigations. Theriogenology 77(4):738–765.e52PubMedCrossRefPubMedCentralGoogle Scholar
  64. Yağar S, Yavaş S, Karahalil B (2011) The role of the ADRA2A C1291G genetic polymorphism in response to dexmedetomidine on patients undergoing coronary artery surgery. Mol Biol Rep 38(5):3383–3389PubMedCrossRefPubMedCentralGoogle Scholar
  65. Yook S-H, Oltvai ZN, Barabási A-L (2004) Functional and topological characterization of protein interaction networks. Proteomics 4(4):928–942PubMedCrossRefPubMedCentralGoogle Scholar
  66. Zhang Y, Gao P, Yuan JS (2010) Plant protein-protein interaction network and interactome. Curr Genomics 11(1):40–46PubMedPubMedCentralCrossRefGoogle Scholar
  67. Zhou H et al (2014) Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions. Biol Direct 9:5PubMedPubMedCentralCrossRefGoogle Scholar
  68. Zhu G et al (2016) PPIM: a protein-protein interaction database for maize. Plant Physiol 170(2):618–626PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Biochemical Engineering Laboratory, Department of Biosciences and BioengineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations