Advertisement

Microbial Products and Biotechnological Applications Thereof: Proteins, Enzymes, Secondary Metabolites, and Valuable Chemicals

  • Fatemeh Dabbagh
  • Zahra Moradpour
  • Abdollah GhasemianEmail author
Chapter

Abstract

Microbial species are among prominent producers of useful natural products, which are a very diverse collection of molecules. These natural products or better defined as specialized metabolites occur in various structural and functional classes and have been used by humans historically for different purposes: pharmaceuticals, chemical industry, agriculture, food and feed sector, etc. To the best of our knowledge, only a small fraction of microbial products is exploited and yet remains a larger chest to be reached. The most advantageous microbial products not only are restricted to useful proteins and enzymes, antibiotics, antitumor agents, immunosuppressants but also include antivirals, anthelmintics, nutraceuticals, polymers, enzyme inhibitors, surfactants, bioherbicides, biopesticides, and many more agricultural and industrial products.

In this regard, the objective of this chapter is to focus attention on the world of microbial natural products and their application from a biotechnological point of view. Microbial sources, biological activities, structures, biodiscovery, and, to some extent, biosynthesis and genetic engineering of natural products obtained from microorganisms are reviewed.

Keywords

Natural products Microbial diversity Proteins Enzymes Metabolites Bioactivity 

References

  1. Abe I, Morita H (2010) Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Nat Pro Rep 27:809–838.  https://doi.org/10.1039/b909988nCrossRefGoogle Scholar
  2. Agarwal SK, Singh SS, Verma S, Kumar S (2000) Antifungal activity of anthraquinone derivatives from Rheum emodi. J Ethnopharmacol 72:43–46PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ahmed EM, El-Refai HA (2010) Cyclodextrin glucosyltransferase production by Bacillus megaterium NCR: evaluation and optimization of culture conditions using factorial design. Indian J Microbiol 50:303–308.  https://doi.org/10.1007/s12088-010-0009-xCrossRefPubMedPubMedCentralGoogle Scholar
  4. Alcazar-Fuoli L, Clavaud C, Lamarre C, Aimanianda V, Seidl-Seiboth V, Mellado E, Latgé JP (2011) Functional analysis of the fungal/plant class chitinase family in Aspergillus fumigatus. Fungal Genet Biol 48:418–429.  https://doi.org/10.1016/j.fgb.2010.12.007CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alonso S, Rendueles M, Díaz M (2015) Microbial production of specialty organic acids from renewable and waste materials. Crit Rev Biotechnol 35:497–513.  https://doi.org/10.3109/07388551.2014.904269CrossRefPubMedPubMedCentralGoogle Scholar
  6. Andersen DO, Weber ND, Wood SG, Hughes BG, Murray BK, North JA (1991) In vitro virucidal activity of selected anthraquinones and anthraquinone derivatives. Antivir Res 16:185–196PubMedCrossRefPubMedCentralGoogle Scholar
  7. Andrighetti-Fröhner CR, Antonio RV, Creczynski-Pasa TB, Barardi CR, Simões CM (2003) Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Mem Inst Oswaldo Cruz 98:834–848CrossRefGoogle Scholar
  8. Anobom CD, Pinheiro AS, De-Andrade RA, Aguieiras EC, Andrade GC, Moura MV, Almeida RV, Freire DM (2014) From structure to catalysis: recent developments in the biotechnological applications of lipases. BioMed Res Int 2014:684506.  https://doi.org/10.1155/2014/684506CrossRefPubMedPubMedCentralGoogle Scholar
  9. Antonisamy P, Ignacimuthu S (2010) Immunomodulatory, analgesic and antipyretic effects of violacein isolated from Chromobacterium violaceum. Phytomedicine 17(3-4):300–304.  https://doi.org/10.1016/j.phymed.2009.05.018CrossRefPubMedPubMedCentralGoogle Scholar
  10. Aoyagi T, Takeuchi T, Matsuzaki A, Kawamura K, Kondo S (1969) Leupeptins, new protease inhibitors from Actinomycetes. J Antibiot 22:283–286PubMedCrossRefPubMedCentralGoogle Scholar
  11. Arthurs S, Dara SK (2018) Microbial biopesticides for invertebrate pests and their markets in the United States. J Invertebr Pathol S0022-2011(17):30363–30364.  https://doi.org/10.1016/j.jip.2018.01.008CrossRefGoogle Scholar
  12. Asgher M, Asad MJ, Rahman SU, Legge RL (2007) A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J Food Eng 79:950–955.  https://doi.org/10.1016/j.jfoodeng.2005.12.053CrossRefGoogle Scholar
  13. Baehaki A, Suhartono MT, Syah D, Sitanggang AB, Setyahadi S, Meinhardt F (2012) Purification and characterization of collagenase from Bacillus licheniformis F11.4. Afr J Microbiol Res 6:2373–2379.  https://doi.org/10.5897/AJMR11.1379CrossRefGoogle Scholar
  14. Banerjee G, Ray AK (2017) Impact of microbial proteases on biotechnological industries. Biotechnol Genet Eng Rev 33(2):119–143.  https://doi.org/10.1080/02648725.2017.1408256CrossRefPubMedPubMedCentralGoogle Scholar
  15. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2015) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80(1):1–43.  https://doi.org/10.1128/MMBR.00019-15CrossRefPubMedPubMedCentralGoogle Scholar
  16. Begg EJ, Barclay ML (1995) Aminoglycosides – 50 years on. Br J Clin Pharmacol 39(6):597–603PubMedPubMedCentralCrossRefGoogle Scholar
  17. Benner RA Jr, Staruszkiewicz WF, Otwell WS (2004) Putrescine, cadaverine, and indole production by bacteria isolated from wild and aquacultured penaeid shrimp stored at 0, 12, 24, and 36 degrees C. J Food Prot 67(1):124–133PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bertino EM, Otterson GA (2011) Romidepsin: a novel histone deacetylase inhibitor for cancer. Expert Opin Investig Drugs 20:1151–1158.  https://doi.org/10.1517/13543784.2011.594437CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bhosale P, Bernstein PS (2005) Microbial xanthophylls. Appl Microbiol Biotechnol 68:445–455.  https://doi.org/10.1007/s00253-005-0032-8CrossRefPubMedPubMedCentralGoogle Scholar
  20. Binod P, Sindhu R, Madhavan A, Abraham A, Mathew AK, Beevi US, Sukumaran RK, Singh SP, Pandey A (2017) Recent developments in L-glutaminase production and applications – An overview. Bioresour Technol 245:1766–1774.  https://doi.org/10.1016/j.biortech.2017.05.059CrossRefPubMedPubMedCentralGoogle Scholar
  21. Blaak H, Schrempf H (1995) Binding and substrate specificities of a Streptomyces olivaceoviridis chitinase in comparison with its proteolytically processed form. Eur J Biochem 229:132–139.  https://doi.org/10.1111/j.1432-1033.1995.0132l.xCrossRefPubMedPubMedCentralGoogle Scholar
  22. Blanusa M, Schenk A, Sadeghi H, Marienhagen J, Schwaneberg U (2010) Phosphorothioate-based ligase-independent gene cloning (PLICing): an enzyme-free and sequence-independent cloning method. Anal Biochem 406:141–146.  https://doi.org/10.1016/j.ab.2010.07.011CrossRefPubMedPubMedCentralGoogle Scholar
  23. Brun T, Rabuske JE, Torero I et al (2016) Production of bioherbicide by Phoma sp. in a stirred-tank bioreactor. 3 Biotech 6(2):230.  https://doi.org/10.1007/s13205-016-0557-9CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cachumba JJ, Antunes FA, Peres GF, Brumano LP, Santos JC, da Silva SS (2016) Current applications and different approaches for microbial L-asparaginase production. Braz J Microbiol 47:77–85.  https://doi.org/10.1016/j.bjm.2016.10.004CrossRefPubMedPubMedCentralGoogle Scholar
  25. Campos JM, Stamford TL, Sarubbo LA, de Luna JM, Rufino RD, Banat IM (2013) Microbial biosurfactants as additives for food industries. Biotechnol Prog 29(5):1097–1108.  https://doi.org/10.1002/btpr.1796CrossRefPubMedPubMedCentralGoogle Scholar
  26. Carroll AL, Desai SH, Atsumi S (2016) Microbial production of scent and flavor compounds. Curr Opin Biotechnol 37:8–15.  https://doi.org/10.1016/j.copbio.2015.09.003CrossRefPubMedPubMedCentralGoogle Scholar
  27. Castillo NA, Valdez AL, Fariña JI (2015) Microbial production of scleroglucan and downstream processing. Front Microbiol 6:1106.  https://doi.org/10.3389/fmicb.2015.01106CrossRefPubMedPubMedCentralGoogle Scholar
  28. Celińska E, Grajek W (2009) Biotechnological production of 2,3-butanediol – current state and prospects. Biotechnol Adv 27:715–725.  https://doi.org/10.1016/j.biotechadv.2009.05.002CrossRefPubMedPubMedCentralGoogle Scholar
  29. Cemazar M, Golzio M, Sersa G, Escoffre JM, Coer A, Vidic S, Teissie J (2012) Hyaluronidase and collagenase increase the transfection efficiency of gene electrotransfer in various murine tumors. Hum Gene Ther 23:128–137.  https://doi.org/10.1089/hum.2011.073CrossRefPubMedPubMedCentralGoogle Scholar
  30. Charlop-Powers Z, Milshteyn A, Brady SF (2014) Metagenomic small molecule discovery methods. Curr Opin Microbiol 19:70–75.  https://doi.org/10.1016/j.mib.2014.05.021CrossRefPubMedPubMedCentralGoogle Scholar
  31. Chauhan PS, Saxena A (2016) Bacterial carrageenases: an overview of production and biotechnological applications. 3 Biotech 6:146.  https://doi.org/10.1007/s13205-016-0461-3CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chauhan PS, Goradia B, Saxena A (2017) Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech 7:323.  https://doi.org/10.1007/s13205-017-0955-7CrossRefPubMedPubMedCentralGoogle Scholar
  33. Chen GC, Jordan F (1984) Brewers’ yeast pyruvate decarboxylase produces acetoin from acetaldehyde: a novel tool to study the mechanism of steps subsequent to carbon dioxide loss. Biochemistry 23(16):3576–3582PubMedCrossRefPubMedCentralGoogle Scholar
  34. Chi WJ, Chang YK, Hong SK (2012) Agar degradation by microorganisms and agar-degrading enzymes. Appl Microbiol Biotechnol 94(4):917–930.  https://doi.org/10.1007/s00253-012-4023-2CrossRefPubMedPubMedCentralGoogle Scholar
  35. Cho C, Choi SY, Luo ZW, Lee SY (2014) Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnol Adv 33:1455–1466.  https://doi.org/10.1016/j.biotechadv.2014.11.006CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chu KH (1987) Collagenase chemonucleolysis via epidural injection. A review of 252 cases. Clin Orthop Relat Res 215:99–104Google Scholar
  37. Clauditz A, Resch A, Wieland KP, Peschel A, Götz F (2006) Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun 74:4950–4953.  https://doi.org/10.1128/IAI.00204-06CrossRefPubMedPubMedCentralGoogle Scholar
  38. Cooney JJ, Marks HW, Smith AM (1966) Isolation and identification of canthaxanthin from Micrococcus roseus. J Bacteriol 92:342–345PubMedPubMedCentralGoogle Scholar
  39. Cude WN, Mooney J, Tavanaie AA et al (2012) Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine Roseobacter Phaeobacter sp. strain Y4I. Appl Environ Microbiol 78:4771–4780.  https://doi.org/10.1128/AEM.00297-12CrossRefPubMedPubMedCentralGoogle Scholar
  40. da Silva TL, Gouveia L, Reis A (2014) Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production. Appl Microbiol Biotechnol 98(3):1043–1053PubMedCrossRefPubMedCentralGoogle Scholar
  41. da Silva RR (2017) Bacterial and fungal proteolytic enzymes: Production, catalysis and potential applications. Appl Biochem Biotechnol 183:1–19.  https://doi.org/10.1007/s12010-017-2427-2CrossRefPubMedPubMedCentralGoogle Scholar
  42. Dabbagh F, Moradpour Z, Ghasemian A, Ghasemi Y (2012) Phylogeny of urate oxidase producing bacteria: on the basis of gene sequences of 16S rRNA and uricase protein. Iran J Pharm Sci 8:99–102Google Scholar
  43. Dabbagh F, Negahdaripour M, Berenjian A, Behfar A, Mohammadi F, Zamani M, Irajie C, Ghasemi Y (2014) Nattokinase: production and application. Appl Microbiol Biotechnol 98:9199–9206.  https://doi.org/10.1007/s00253-014-6135-3CrossRefGoogle Scholar
  44. Dabbagh F, Ghoshoon MB, Hemmati S, Zamani M, Mohkam M, Ghasemi Y (2016) Engineering human urate oxidase: towards reactivating it as an important therapeutic enzyme. Curr Pharm Biotechnol 17:141–146.  https://doi.org/10.2174/1389201016666150907113055CrossRefGoogle Scholar
  45. Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782.  https://doi.org/10.1007/s00253-005-0183-7CrossRefPubMedPubMedCentralGoogle Scholar
  46. Davies J (2013) Specialized microbial metabolites: functions and origins. J Antibiot (Tokyo) 66(7):361–364.  https://doi.org/10.1038/ja.2013.61CrossRefGoogle Scholar
  47. de Araújo HW, Fukushima K, Takaki GM (2010) Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate. Molecules 15(10):6931–6940.  https://doi.org/10.3390/molecules15106931CrossRefPubMedPubMedCentralGoogle Scholar
  48. de Souza PM, Bittencourt ML, Caprara CC et al (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46(2):337–346.  https://doi.org/10.1590/S1517-838246220140359CrossRefPubMedPubMedCentralGoogle Scholar
  49. DeBoer C, Meulman PA, Wnuk RJ, Peterson DH (1970) Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 23(9):442–447CrossRefGoogle Scholar
  50. Demain AL (2014) Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biotechnol 41:185–201.  https://doi.org/10.1007/s10295-013-1325-zCrossRefPubMedPubMedCentralGoogle Scholar
  51. Dietrich JA, Yoshikuni Y, Fisher KJ et al (2009) A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450(BM3). ACS Chem Biol 4(4):261–267.  https://doi.org/10.1021/cb900006hCrossRefPubMedPubMedCentralGoogle Scholar
  52. Dominguez JM, Gong CS, Tsao GT (1997) Production of xylitol from D-xylose by Debaryomyces hansenii. Appl Biochem Biotechnol 63–65:117–127.  https://doi.org/10.1007/BF02920418CrossRefPubMedPubMedCentralGoogle Scholar
  53. Dong J, Tamaru Y, Araki T (2007) A unique beta-agarase, AgaA, from a marine bacterium, Vibrio sp. strain PO-303. Appl Microbiol Biotechnol 74:1248–1255.  https://doi.org/10.1007/s00253-006-0781-zCrossRefPubMedPubMedCentralGoogle Scholar
  54. Doukyu N (2009) Characteristics and biotechnological applications of microbial cholesterol oxidases. Appl Microbiol Biotechnol 83:825–837.  https://doi.org/10.1007/s00253-009-2059-8CrossRefPubMedPubMedCentralGoogle Scholar
  55. Du J, Shao Z, Zhao H (2011) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38:873–890.  https://doi.org/10.1007/s10295-011-0970-3CrossRefPubMedPubMedCentralGoogle Scholar
  56. Duarte AS, Correia A, Esteves AC (2016) Bacterial collagenases – A review. Crit Rev Microbiol 42:106–126.  https://doi.org/10.3109/1040841X.2014.904270CrossRefPubMedPubMedCentralGoogle Scholar
  57. Duffose L (2006) Microbial production of food grade pigments, food grade pigments. Food Technol Biotechnol 44:313–321Google Scholar
  58. Dyrset N, Lystad KQ, Levine DW (1997) Development of a fermentation process for production of a κ-carrageenase from Pseudomonas carrageenovora. Enzyme Microb Technol 20:418–423.  https://doi.org/10.1016/S0141-0229(96)00169-XCrossRefGoogle Scholar
  59. Ebrahimi N, Ebrahimi A, Ghasemian A, Ghasemi Y (2011) Cloning and expression of staphylokinase, a potential thrombolytic agent. Curr Opin Biotechnol S22:S127CrossRefGoogle Scholar
  60. Endo A, Hayashida O, Murakawa S (1983) Mutastein, a new inhibitor of adhesive-insoluble glucan synthesis by glucosyltransferases of Streptococcus mutans. J Antibiot (Tokyo) 36:203–207CrossRefGoogle Scholar
  61. Feng Y, Shao Y, Chen F (2012) Monascus pigments. Appl Microbiol Biotechnol 96:1421–1440.  https://doi.org/10.1007/s00253-012-4504-3CrossRefPubMedPubMedCentralGoogle Scholar
  62. Fiedler T, Strauss M, Hering S et al (2015) Arginine deprivation by arginine deiminase of Streptococcus pyogenes controls primary glioblastoma growth in vitro and in vivo. Cancer Biol Ther 16:1047–1055.  https://doi.org/10.1080/15384047.2015.1026478CrossRefPubMedPubMedCentralGoogle Scholar
  63. Fincheira P, Quiroz A (2018) Microbial volatiles as plant growth inducers. Microbiol Res 208:63–75.  https://doi.org/10.1016/j.micres.2018.01.002CrossRefPubMedPubMedCentralGoogle Scholar
  64. Forli S (2014) Epothilones: from discovery to clinical trial. Curr Top Med Chem 14:2312–2321PubMedPubMedCentralCrossRefGoogle Scholar
  65. Forootanfar H, Faramarzi MA (2015) Insights into laccase producing organisms, fermentation states, purification strategies, and biotechnological applications. Biotechnol Prog 31:1443–1463.  https://doi.org/10.1002/btpr.2173CrossRefPubMedPubMedCentralGoogle Scholar
  66. Frankowski J, Lorito M, Scala F, Schmid R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426.  https://doi.org/10.1007/s002030100347CrossRefPubMedPubMedCentralGoogle Scholar
  67. Fu XT, Kim SM (2010) Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar Drugs 8:200–218.  https://doi.org/10.3390/md8010200CrossRefPubMedPubMedCentralGoogle Scholar
  68. Funa N, Ohnishi Y, Fujli I, Shibuya M, Ebizuka Y, Horinouchi S (1999) A new pathway for polyketide synthesis in microorganisms. Nature 400:897–899.  https://doi.org/10.1038/23748CrossRefPubMedPubMedCentralGoogle Scholar
  69. Gani OA, Engh RA (2010) Protein kinase inhibition of clinically important staurosporine analogues. Nat Prod Rep 27:489–498.  https://doi.org/10.1039/b923848bCrossRefPubMedPubMedCentralGoogle Scholar
  70. Gaur R, Singh R, Tiwari S, Yadav SK, Daramwal NS (2010) Optimization of physicochemical and nutritional parameters for a novel pullulan-producing fungus, Eurotium chevalieri. J Appl Microbiol 109:1035–1043.  https://doi.org/10.1111/j.1365-2672.2010.04731.xCrossRefPubMedPubMedCentralGoogle Scholar
  71. Ghasemi Y, Rasoul Amini S, Naseri AT, Montazeri Najafabady N, Mobasher MA, Dabbagh F (2012a) Microalgae biofuel potentials (Review). Appl Biochem Microbiol 48:126–144CrossRefGoogle Scholar
  72. Ghasemi Y, Dabbagh F, Ghasemian A (2012b) Cloning of a fibrinolytic enzyme (subtilisin) gene from Bacillus subtilis in Escherichia coli. Mol Biotechnol 52:1–7.  https://doi.org/10.1007/s12033-011-9467-6CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ghasemi Y, Yarahmadi E, Ghoshoon MB, Dabbagh F et al (2014) Cloning, expression and purification of laccase enzyme gene from Bacillus subtilis in Escherichia coli. Minerva Biotecnologica 26:295–300Google Scholar
  74. Ghasemian A, Moradpour Z (2017) Cyanobacteria: biotechnological and environmental applications. In: Gupta VK, Zeilinger S, Ferreira Filho EX, Durán-Dominguez-de-Bazua MC, Purchase D (eds) Microbial applications: recent advancements and future developments, 1st edn. Walter de Gruyter GmbH & Co KG, Berlin/Boston, pp 325–368.  https://doi.org/10.1515/9783110412789-016CrossRefGoogle Scholar
  75. Ghasemian A, Moradpour Z (2019) Production of recombinant microbial thermostable lipases. In: Singh HB, Gupta VK, Jogaiah S (eds) New and future developments in microbial biotechnology and bioengineering, 1st edn. Elsevier, Amsterdam, pp 133–150.  https://doi.org/10.1016/B978-0-444-63503-7.00008-5CrossRefGoogle Scholar
  76. Ghasemian A, Yazdi MT, Sepehrizadeh Z, Yazdi ZT, Zarrini G (2009) Overexpression, one-step purification, and characterization of a type II cholesterol oxidase from a local isolate Rhodococcus sp. PTCC 1633. World J Microbiol Biotechnol 25:773–779CrossRefGoogle Scholar
  77. Ghimire GP, Thuan NH, Koirala N, Sohng JK (2016) Advances in biochemistry and microbial production of squalene and its derivatives. J Microbiol Biotechnol 26:441–451.  https://doi.org/10.4014/jmb.1510.10039CrossRefPubMedPubMedCentralGoogle Scholar
  78. Gholami A, Mohkam M, Rasoul Amini S, Ghasemi Y (2016) Industrial production of polyhydroxyalkanoates by bacteria: opportunities and challenges. Minerva Biotecnologica 28:59–74Google Scholar
  79. Ghoshoon MB, Berenjian A, Hemmati S, Dabbagh F, Karimi Z, Negahdaripour M, Ghasemi Y (2015) Extracellular production of recombinant L-asparaginase II in Escherichia coli: medium optimization using response surface methodology. Int J Pept Res Ther 21:487–495.  https://doi.org/10.1007/s10989-015-9476-6CrossRefGoogle Scholar
  80. Giavasis I (2014) Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr Opin Biotechnol 26:162–173.  https://doi.org/10.1016/j.copbio.2014.01.010CrossRefPubMedPubMedCentralGoogle Scholar
  81. Giddings LA, Newman DJ (2013) Microbial natural products: molecular blueprints for antitumor drugs. J Ind Microbiol Biotechnol 40:1181–1210.  https://doi.org/10.1007/s10295-013-1331-1CrossRefPubMedPubMedCentralGoogle Scholar
  82. Giordano D, Coppola D, Russo R et al (2015) Marine microbial secondary metabolites: pathways, evolution and physiological roles. Adv Microb Physiol 66:357–428.  https://doi.org/10.1016/bs.ampbs.2015.04.001CrossRefPubMedPubMedCentralGoogle Scholar
  83. Gniazdowski M, Denny WA, Nelson SM, Czyz M (2003) Transcription factors as targets for DNA-interacting drugs. Curr Med Chem 10:909–924PubMedCrossRefPubMedCentralGoogle Scholar
  84. Gnirss K, Kühl A, Karsten C et al (2012) Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression. Virology 424:3–10.  https://doi.org/10.1016/j.virol.2011.11.031CrossRefPubMedPubMedCentralGoogle Scholar
  85. Goh EB, Baidoo EEK, Burd H, Lee TS, Keasling JD, Beller HR (2014) Substantial improvements in methyl ketone production in E. coli and insights on the pathway from in vitro studies. Metab Eng 26:67–76.  https://doi.org/10.1016/j.ymben.2014.09.003CrossRefPubMedPubMedCentralGoogle Scholar
  86. Goldberg DM (1992) Enzymes as agents for the treatment of disease. Clinica Chimica Acta 206:45–76CrossRefGoogle Scholar
  87. Goo BG, Hwang YJ, Park JK (2014) Bacillus thuringiensis: a specific gamma-cyclodextrin producer strain. Carbohydr Res 386:12–17.  https://doi.org/10.1016/j.carres.2013.12.005CrossRefPubMedPubMedCentralGoogle Scholar
  88. Gu Y, Zheng J, Feng J et al (2017) Improvement of levan production in Bacillus amyloliquefaciens through metabolic optimization of regulatory elements. Appl Microbiol Biotechnol 101(10):4163–4174.  https://doi.org/10.1007/s00253-017-8171-2CrossRefPubMedPubMedCentralGoogle Scholar
  89. Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32.  https://doi.org/10.1007/s00253-002-0975-yCrossRefPubMedPubMedCentralGoogle Scholar
  90. Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res Int 2013:1–18.  https://doi.org/10.1155/2013/329121CrossRefGoogle Scholar
  91. Halder U, Banerjee A, Bandopadhyay R (2017) Structural and functional properties, biosynthesis, and patenting trends of bacterial succinoglycan: a review. Indian J Microbiol 57:278–284.  https://doi.org/10.1007/s12088-017-0655-3CrossRefPubMedPubMedCentralGoogle Scholar
  92. Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S (2013) Chitinases: an update. J Pharm Bioallied Sci 5:21–29.  https://doi.org/10.4103/0975-7406.106559CrossRefPubMedPubMedCentralGoogle Scholar
  93. Han RZ, Xu GC, Dong JJ, Ni Y (2016) Arginine deiminase: recent advances in discovery, crystal structure, and protein engineering for improved properties as an anti-tumor drug. Appl Microbiol Biotechnol 100:4747–4760.  https://doi.org/10.1007/s00253-016-7490-zCrossRefPubMedPubMedCentralGoogle Scholar
  94. Harding DP, Raizada MN (2015) Controlling weeds with fungi, bacteria and viruses: a review. Front Plant Sci 6:659.  https://doi.org/10.3389/fpls.2015.00659CrossRefPubMedPubMedCentralGoogle Scholar
  95. Hasumi K, Arahira M, Sakai K, Endo A (1987) Irreversible inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by phenicin (phoenicine). J Antibiot (Tokyo) 40:224–226CrossRefGoogle Scholar
  96. Hecht SM (1986) The chemistry of activated bleomycin. Acc Chem Res 19(12):383–391.  https://doi.org/10.1021/ar00132a002CrossRefGoogle Scholar
  97. Hecht SM (1994) RNA degradation by bleomycin, a naturally occurring bioconjugate. Bioconjugate Chem 5:513–526.  https://doi.org/10.1021/bc00030a006CrossRefGoogle Scholar
  98. Horinouchi H (2009) Combinatorial biosynthesis of plant medicinal polyketides by microorganisms. Curr Opin Cheml Biol 13(2):197–204.  https://doi.org/10.1016/j.cbpa.2009.02.004CrossRefGoogle Scholar
  99. Hotson IK (1982) The avermectins: a new family of antiparasitic agents. J S Afr Vet Assoc 53(2):87–90PubMedPubMedCentralGoogle Scholar
  100. Ióca LP, Allard PM, Berlinck RG (2014) Thinking big about small beings - the (yet) underdeveloped microbial natural products chemistry in Brazil. Nat Prod Rep 31(5):646–675.  https://doi.org/10.1039/c3np70112cCrossRefPubMedPubMedCentralGoogle Scholar
  101. Ishimaru T, Kanamaru T, Takahashi T, Okazaki H (1988) Inhibition of prolyl hydroxylase activity and collagen biosynthesis by fibrostatin C, a novel inhibitor produced by Streptomyces catenulae subsp. griseospora No. 23924. J Antibiot (Tokyo) 41:1668–1674CrossRefGoogle Scholar
  102. Islan GA, Martinez YN, Illanes A, Castro GR (2014) Development of novel alginate lyase cross-linked aggregates for the oral treatment of cystic fibrosis. RSC Adv 4:11758–11765.  https://doi.org/10.1039/C3RA47850ECrossRefGoogle Scholar
  103. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397PubMedCrossRefPubMedCentralGoogle Scholar
  104. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403PubMedCrossRefPubMedCentralGoogle Scholar
  105. Jeandet P, Vasserot Y, Chastang T, Courot E (2013) Engineering microbial cells for the biosynthesis of natural compounds of pharmaceutical significance. BioMed Res Int 2013:780145.  https://doi.org/10.1155/2013/780145CrossRefPubMedPubMedCentralGoogle Scholar
  106. Jesuraj SAV, Sarker MMR, Ming LC, Praya SMJ, Ravikumar M, Wui WT (2017) Enhancement of the production of L-glutaminase, an anticancer enzyme, from Aeromonas veronii by adaptive and induced mutation techniques. PLoS One 12(8):e0181745.  https://doi.org/10.1371/journal.pone.0181745CrossRefPubMedPubMedCentralGoogle Scholar
  107. Jordan GH (2008) The use of intralesional clostridial collagenase injection therapy for Peyronie’s disease: a prospective, single-center, non-placebo-controlled study. J Sex Med 5:180–187.  https://doi.org/10.1111/j.1743-6109.2007.00651.xCrossRefPubMedPubMedCentralGoogle Scholar
  108. Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35:323–331CrossRefGoogle Scholar
  109. Kanayama Y, Sakai Y (2005) Purification and properties of a new type of protease produced by Microbacterium liquefaciens. Biosci Biotechnol Biochem 69:916–921.  https://doi.org/10.1271/bbb.69.916CrossRefPubMedPubMedCentralGoogle Scholar
  110. Kang HS, Brady SF (2013) Arimetamycin A: improving clinically relevant families of natural products through sequence- guided screening of soil metagenomes. Angew Chem Int Ed Engl 52:11063–11067.  https://doi.org/10.1002/anie.201305109CrossRefPubMedPubMedCentralGoogle Scholar
  111. Kato N, Takahashi S, Nogawa T, Saito T, Osada H (2012) Construction of a microbial natural product library for chemical biology studies. Curr Opin Chem Biol 16:101–108.  https://doi.org/10.1016/j.cbpa.2012.02.016CrossRefPubMedPubMedCentralGoogle Scholar
  112. Kaur B, Kaur R (2016) Purification of a dimeric arginine deiminase from Enterococcus faecium GR7 and study of its anti-cancerous activity. Protein Expr Purif 125:53–60.  https://doi.org/10.1016/j.pep.2015.09.011CrossRefPubMedPubMedCentralGoogle Scholar
  113. Kido Y, Hamakado T, Yoshida T, Anno M, Motoki Y, Wakamiya T, Shiba T (1983) Isolation and characterization of ancovenin, a new inhibitor of angiotensin I converting enzyme, produced by actinomycetes. J Antibiot (Tokyo) 36:1295–1299CrossRefGoogle Scholar
  114. Kino T, Hatanaka H, Miyata S et al (1987) FK-506, a novel immunosuppression isolated from a Streptomyces. II. Immunosuppressive effect of FK506 in vitro. J Antibiot (Tokyo) 40(9):1256–1265CrossRefGoogle Scholar
  115. Kondo S, Ikeda Y, Takeuchi T et al (1996) New bellenamine homologs inhibiting human immunodeficiency virus type I infectivity. J Antibiot 49:113–118PubMedCrossRefPubMedCentralGoogle Scholar
  116. Konsoula Z, Liakopoulou-Kyriakides M (2007) Co-production of α-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates. Bioresour Technol 98:150–157.  https://doi.org/10.1016/j.biortech.2005.11.001CrossRefPubMedPubMedCentralGoogle Scholar
  117. Kreyenschulte D, Krull R, Margaritis A (2014) Recent advances in microbial biopolymer production and purification. Crit Rev Biotechnol 34:1–15.  https://doi.org/10.3109/07388551.2012.743501CrossRefPubMedPubMedCentralGoogle Scholar
  118. Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  119. Krishnapura PR, Belur PD, Subramanya S (2016) A critical review on properties and applications of microbial L-asparaginases. Crit Rev Microbiol 42:720–737.  https://doi.org/10.3109/1040841X.2015.1022505CrossRefPubMedPubMedCentralGoogle Scholar
  120. Kühne W (1976) Über das Verhaten verschiedener organisirter und sog. ungeformter Fermente. FEBS Letters 62:E4–E7.  https://doi.org/10.1016/0014-5793(76)80847-2CrossRefGoogle Scholar
  121. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750.  https://doi.org/10.1155/2013/162750CrossRefGoogle Scholar
  122. Kunjapur AM, Tarasova Y, Prather KL (2014) Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli. J Am Chem Soc 136:11644–11654.  https://doi.org/10.1021/ja506664aCrossRefPubMedPubMedCentralGoogle Scholar
  123. Law BK (2005) Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hematol 56:47–60.  https://doi.org/10.1016/j.critrevonc.2004.09.009CrossRefPubMedPubMedCentralGoogle Scholar
  124. Lee BH, Clothier MF, Dutton FE et al (2002) Marcfortine and paraherquamide class of anthelmintics: discovery of PNU-141962. Curr Top Med Chem 2:779–793PubMedCrossRefPubMedCentralGoogle Scholar
  125. Li L, Jiang X, Guan H, Wang P (2011) Preparation, purification and characterization of alginate oligosaccharides degraded by alginate lyase from Pseudomonas sp. HZJ 216. Carbohydr Res 346:794–800.  https://doi.org/10.1016/j.carres.2011.01.023CrossRefPubMedPubMedCentralGoogle Scholar
  126. Li S, Jia P, Wang L, Yu W, Han F (2013) Purification and characterization of a new thermostable κ-carrageenase from the marine bacterium Pseudoalteromonas sp. QY203. J Ocean U China 12:155–159.  https://doi.org/10.1007/s11802-013-1994-2CrossRefGoogle Scholar
  127. Li J, Kim SG, Blenis J (2014a) Rapamycin: one drug, many effects. Cell Metab 19:373–379.  https://doi.org/10.1016/j.cmet.2014.01.001CrossRefPubMedPubMedCentralGoogle Scholar
  128. Li S, Xu N, Liu L, Chen J (2014b) Engineering of carboligase activity reaction in Candida glabrata for acetoin production. Metab Eng 22:32–39.  https://doi.org/10.1016/j.ymben.2013.12.005CrossRefPubMedPubMedCentralGoogle Scholar
  129. Lin LL, Hsu WH, Chu WS (1997) A gene encoding for an α-amylase from thermophilic Bacillus sp. strain TS-23 and its expression in Escherichia coli. J Appl Microbiol 82:325–334PubMedCrossRefPubMedCentralGoogle Scholar
  130. Liu GY, Essex A, Buchanan JT et al (2005) Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 202:209–215.  https://doi.org/10.1084/jem.20050846CrossRefPubMedPubMedCentralGoogle Scholar
  131. Liu L, Liu Y, Li J, Du G, Chen J (2011) Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Fact 10:99.  https://doi.org/10.1186/1475-2859-10-99CrossRefPubMedPubMedCentralGoogle Scholar
  132. Liu Y, Gu Q, Ofosu FK, Yu X (2015) Isolation and characterization of curdlan produced by Agrobacterium HX1126 using α-lactose as substrate. Int J Biol Macromol 81:498–503.  https://doi.org/10.1016/j.ijbiomac.2015.08.045CrossRefPubMedPubMedCentralGoogle Scholar
  133. Long M, Yu Z, Xu X (2010) A novel beta-agarase with high pH stability from marine Agarivorans sp. LQ48. Mar Biotechnol (NY) 12:62–69.  https://doi.org/10.1007/s10126-009-9200-7CrossRefGoogle Scholar
  134. Lu X, Chu Y, Wu Q, Gu Y, Han F, Yu W (2009) Cloning, expression and characterization of a new agarase-encoding gene from marine Pseudoalteromonas sp. Biotechnol Lett 31:1565–1570.  https://doi.org/10.1007/s10529-009-0042-1CrossRefPubMedPubMedCentralGoogle Scholar
  135. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577.  https://doi.org/10.1128/MMBR.66.3.506-577.2002CrossRefPubMedPubMedCentralGoogle Scholar
  136. Ma W, Chen K, Li Y, Hao N, Wang X, Ouyang P (2017) Advances in cadaverine bacterial production and its applications. Engineering 3(3):308–317.  https://doi.org/10.1016/J.ENG.2017.03.012CrossRefGoogle Scholar
  137. Makinen KK, Makinen PL (1987) Purification and properties of an extracellular collagenolytic protease produced by the human oral bacterium Bacillus cereus (strain Soc 67). J Biol Chem 262:12488–12495PubMedPubMedCentralGoogle Scholar
  138. Maleki S, Almaas E, Zotchev S, Valla S, Ertesvåg H (2015) Alginate biosynthesis factories in Pseudomonas fluorescens: localization and correlation with alginate production level. Appl Environ Microbiol 82:1227–1236.  https://doi.org/10.1128/AEM.03114-15CrossRefPubMedPubMedCentralGoogle Scholar
  139. Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2015) Actinobacterial enzyme inhibitors – a review. Crit Rev Microbiol 41:261–272.  https://doi.org/10.3109/1040841X.2013.837425CrossRefPubMedPubMedCentralGoogle Scholar
  140. Martínez-Gutierrez M, Castellanos JE, Gallego-Gómez JC (2011) Statins reduce dengue virus production via decreased virion assembly. Intervirology 54:202–216.  https://doi.org/10.1159/000321892CrossRefPubMedPubMedCentralGoogle Scholar
  141. Mate DM, Alcalde M (2017) Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 10:1457–1467.  https://doi.org/10.1111/1751-7915.12422CrossRefPubMedPubMedCentralGoogle Scholar
  142. Mathivanan N, Kabilan V, Murugesan K (1998) Purification, characterization, and antifungal activity of chitinase from Fusarium chlamydosporum, a mycoparasite to groundnut rust, Puccinia arachidis. Can J Microbiol 44:646–651PubMedCrossRefPubMedCentralGoogle Scholar
  143. Matsuura A, Okumura H, Asakura R et al (1993) Pharmacological profiles of aspergillomarasmines as endothelin converting enzyme inhibitors. Jpn J Pharmacol 63:187–193PubMedCrossRefPubMedCentralGoogle Scholar
  144. Mazor Y, Blarcom TV, Mabry R, Iverson BL, Georgiou G (2007) Isolation of engineered, full-length antibodies from libraries expressed in Escherichia coli. Nature Biotechnol 25:563–565.  https://doi.org/10.1038/nbt1296CrossRefGoogle Scholar
  145. Medina-Rivero E, Balderas-Hernández VE, Ordoñez-Acevedo LG, Paz-Maldonado LMT, Rosa APB-DL, León-Rodríguez AD (2007) Modified penicillin acylase signal peptide allows the periplasmic production of soluble human interferon. Biotechnol Lett 29:1369–1374PubMedCrossRefPubMedCentralGoogle Scholar
  146. Mendonsa ES, Vartak PH, Rao JU, Deshpande MV (1996) An enzyme from Myrothecium verrucaria that degrades insect cuticles for biocontrol of Aedes aegypti mosquito. Biotechnol Lett 18:373–376CrossRefGoogle Scholar
  147. Michel G, Chantalat L, Fanchon E, Henrissat B, Kloareg B, Dideberg O (2001) The ι-carrageenase of Alteromonas fortis. A β-helix fold-containing enzyme for the degradation of a highly polyanionic polysaccharide. J Biol Chem 276:40202–40209PubMedCrossRefPubMedCentralGoogle Scholar
  148. Milshteyn A, Schneider JS, Brady SF (2014) Mining the metabiome: identifying novel natural products from microbial communities. Chem Biol 21:1121–1123.  https://doi.org/10.1016/j.chembiol.2014.08.006CrossRefGoogle Scholar
  149. Minagawa K, Kouzuki S, Kamigauchi T (2002) Stachyflin and acetylstachyflin, novel anti-influenza A virus substances, produced by Stachybotrys sp. RF-7260. II. Synthesis and preliminary structure-activity relationships of stachyflin derivatives. J Antibiot (Tokyo) 55:165–171CrossRefGoogle Scholar
  150. Miyazaki W, Tamaoka H, Shinohara M et al (1980) A complement inhibitor produced by Stachybotrys complementi, nov. sp. K-76, a new species of fungi imperfecti. Microbiol Immunol 24:1091–1108PubMedCrossRefPubMedCentralGoogle Scholar
  151. Molla A, Hellen CU, Wimmer E (1993) Inhibition of proteolytic activity of poliovirus and rhinovirus 2A proteinases by elastase-specific inhibitors. J Virol 67:4688–4695PubMedPubMedCentralGoogle Scholar
  152. Monaghan RL, Tkacz JS (1990) Bioactive microbial products: focus upon mechanism of action. Annu Rev Microbiol 44:271–331.  https://doi.org/10.1146/annurev.mi.44.100190.001415CrossRefPubMedPubMedCentralGoogle Scholar
  153. Moon T, Yoon S, Lanza A, Roy-Mayhew J, Prather K (2009) Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl Environ Microbiol 75:589–595.  https://doi.org/10.1128/AEM.00973-08CrossRefPubMedPubMedCentralGoogle Scholar
  154. Moon HJ, Jeya M, Kim IW, Lee JK (2010a) Biotechnological production of erythritol and its applications. Appl Microbiol Biotechnol 86:1017–1025.  https://doi.org/10.1007/s00253-010-2496-4CrossRefPubMedPubMedCentralGoogle Scholar
  155. Moon TS, Dueber JE, Shiue E, Prather KL (2010b) Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab Eng 12:298–305.  https://doi.org/10.1016/j.ymben.2010.01.003CrossRefPubMedPubMedCentralGoogle Scholar
  156. Moradpour Z, Ghasemian A (2016) Protein engineering of microbial cholesterol oxidases: a molecular approach toward development of new enzymes with new properties. Appl Microbiol Biotechnol 100:4323–4336.  https://doi.org/10.1007/s00253-016-7497-5CrossRefPubMedPubMedCentralGoogle Scholar
  157. Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4:65.  https://doi.org/10.3389/fmicb.2013.00065CrossRefPubMedPubMedCentralGoogle Scholar
  158. Mupondwa E, Li X, Boyetchko S, Hynes R, Geissler J (2015) Technoeconomic analysis of large scale production of pre-emergent Pseudomonas fluorescens microbial bioherbicide in Canada. Bioresour Technol 175:517–528.  https://doi.org/10.1016/j.biortech.2014.10.130CrossRefPubMedPubMedCentralGoogle Scholar
  159. Nácher-Vázquez M, Ballesteros N, Canales Á et al (2015) Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohydr Polym 124:292–301.  https://doi.org/10.1016/j.carbpol.2015.02.020CrossRefPubMedPubMedCentralGoogle Scholar
  160. Nagano H, To KA (2000) Purification of collagenase and specificity of its related enzyme from Bacillus subtilis FS-2. Biosci Biotechnol Biochem 64:181–183.  https://doi.org/10.1271/bbb.64.181CrossRefPubMedPubMedCentralGoogle Scholar
  161. Nakae K, Nishimura Y, Ohba S, Akamatsu Y (2006) Migrastatin acts as a muscarinic acetylcholine receptor antagonist. J Antibiot (Tokyo) 59:685–692.  https://doi.org/10.1038/ja.2006.91CrossRefGoogle Scholar
  162. Nakajima H, Hamasaki T, Nishimura K, Kimura Y, Udagawa S, Sato S (1988) Isolation of 2-acetylamino-3-hydroxy-4-methyl-oct-6-enoic acid, a derivative of the ‘C9 amino acid’ residue of cyclosporins, produced by the fungus Neocosmospora vasinfecta E. F. Smith. Agri Biol Chem 52:1621–1623Google Scholar
  163. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459PubMedCrossRefPubMedCentralGoogle Scholar
  164. Nakamura M, Ohno T, Kunimoto S, Naganawa H, Takeuchi T (1991) Kijimicin: an inhibitor of human immunodeficiency virus in acutely and chronically infected cells. J Antibiot 44:569–571PubMedCrossRefPubMedCentralGoogle Scholar
  165. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477.  https://doi.org/10.1021/np068054vCrossRefPubMedPubMedCentralGoogle Scholar
  166. Nguyen AQD, Schneider J, Reddy GK, Wendisch VF (2015) Fermentative production of the diamine putrescine: System metabolic engineering of Corynebacterium glutamicum. Metabolites 5(2):211–231.  https://doi.org/10.3390/metabo5020211CrossRefPubMedPubMedCentralGoogle Scholar
  167. Ni Y, Schwaneberg U, Sun ZH (2008) Arginine deiminase, a potential anti-tumor drug. Cancer Lett 261:1–11.  https://doi.org/10.1016/j.canlet.2007.11.038CrossRefPubMedPubMedCentralGoogle Scholar
  168. Nielsen DR, Yoon SH, Yuan CJ, Prather KL (2010) Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli. Biotechnol J 5:274–284.  https://doi.org/10.1002/biot.200900279CrossRefPubMedPubMedCentralGoogle Scholar
  169. Nishida H, Tomoda H, Cao J, Okuda S, Omura S (1991) Purpactins, new inhibitors of acyl-CoA:cholesterol acyltransferase produced by Penicillium purpurogenum. II. Structure elucidation of purpactins A, B and C. J Antibiot (Tokyo) 44:144–151CrossRefGoogle Scholar
  170. Nishimura Y, Umezawa Y, Kondo S et al (1993) Synthesis of 3-episiastatin B analogues having anti-influenza virus activity. J Antibiot (Tokyo) 46:1883–1889CrossRefGoogle Scholar
  171. Noda S, Kondo A (2017) Recent advances in microbial production of aromatic chemicals and derivatives. Trends Biotechnol 35:785–796.  https://doi.org/10.1016/j.tibtech.2017.05.006CrossRefPubMedPubMedCentralGoogle Scholar
  172. Ogunleye A, Bhat A, Irorere VU, Hill D, Williams C, Radecka I (2015) Poly-γ-glutamic acid: production, properties and applications. Microbiology 161:1–17.  https://doi.org/10.1099/mic.0.081448-0CrossRefPubMedPubMedCentralGoogle Scholar
  173. Oh C, Nikapitiya C, Lee Y, Whang I, Kim SJ, Kang DH, Lee J (2010) Cloning, purification and biochemical characterization of beta agarase from the marine bacterium Pseudoalteromonas sp. AG4. J Ind Microbiol Biotechnol 37:483–494.  https://doi.org/10.1007/s10295-010-0694-9CrossRefPubMedPubMedCentralGoogle Scholar
  174. Omura S, Ishikawa H, Kuga H, Imamura N, Taga S, Takahashi Y, Tanaka H (1986) Adecypenol, a unique adenosine deaminase inhibitor containing homopurine and cyclopentene rings. Taxonomy, production and enzyme inhibition. J Antibiot (Tokyo) 39:1219–1224CrossRefGoogle Scholar
  175. Omura S, Tanaka Y, Kanaya I, Shinose M, Takahashi Y (1990) Phthoxazolin, a specific inhibitor of cellulose biosynthesis, produced by a strain of Streptomyces sp. J Antibiot 43:1034–1036PubMedCrossRefPubMedCentralGoogle Scholar
  176. Öner ET, Hernández L, Combie J (2016) Review of levan polysaccharide: from a century of past experiences to future prospects. Biotechnol Adv 34:827–844.  https://doi.org/10.1016/j.biotechadv.2016.05.002CrossRefPubMedPubMedCentralGoogle Scholar
  177. Overton TW (2014) Recombinant protein production in bacterial hosts. Drug Discov Today 19:590–601.  https://doi.org/10.1016/j.drudis.2013.11.008CrossRefPubMedPubMedCentralGoogle Scholar
  178. Owen JG, Charlop-Powers Z, Smith AG et al (2015) Multiplexed metagenome mining using short DNA sequence tags facilitates targeted discovery of epoxyketone proteasome inhibitors. Proc Natl Acad Sci U S A 112:4221–4226.  https://doi.org/10.1073/pnas.1501124112CrossRefPubMedPubMedCentralGoogle Scholar
  179. Pan NC, Pereira HCB, da Silva MLC, Vasconcelos AFD, Celligoi MAPC (2017) Improvement production of hyaluronic acid by Streptococcus zooepidemicus in sugarcane molasses. Appl Biochem Biotechnol 182:276–293.  https://doi.org/10.1007/s12010-016-2326-yCrossRefPubMedPubMedCentralGoogle Scholar
  180. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152PubMedCrossRefPubMedCentralGoogle Scholar
  181. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA (2011) Carbapenems: past, present, and future. Antimicrob Agents Chemother 55:4943–4960.  https://doi.org/10.1128/AAC.00296-11CrossRefPubMedPubMedCentralGoogle Scholar
  182. Park YC, Shaffer CE, Bennett GN (2009) Microbial formation of esters. Appl Microbiol Biotechnol 85:13–25.  https://doi.org/10.1007/s00253-009-2170-xCrossRefPubMedPubMedCentralGoogle Scholar
  183. Patridge E, Gareiss P, Kinch MS, Hoyer D (2016) An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today 21:204–207.  https://doi.org/10.1016/j.drudis.2015.01.009CrossRefPubMedPubMedCentralGoogle Scholar
  184. Patry J, Blanchette V (2017) Enzymatic debridement with collagenase in wounds and ulcers: a systematic review and meta-analysis. Int Wound J 14:1055–1065.  https://doi.org/10.1111/iwj.12760CrossRefPubMedPubMedCentralGoogle Scholar
  185. Peláez F (2006) The historical delivery of antibiotics from microbial natural products – Can history repeat? Biochem Pharmacol 71:981–990.  https://doi.org/10.1016/j.bcp.2005.10.010CrossRefPubMedPubMedCentralGoogle Scholar
  186. Pereira F, Latino DARS, Gaudêncio SP (2014) A chemoinformatics approach to the discovery of lead-like molecules from marine and microbial sources en route to antitumor and antibiotic drugs. Mar Drugs 12:757–778.  https://doi.org/10.3390/md12020757CrossRefPubMedPubMedCentralGoogle Scholar
  187. Petrova DH, Shishkov SA, Vlahov SS (2006) Novel thermostable serine collagenase from Thermoactinomyces sp. 21E: purification and some properties. J Basic Microbiol 46:275–285.  https://doi.org/10.1002/jobm.200510063CrossRefPubMedPubMedCentralGoogle Scholar
  188. Pettibone DJ, Clineschmidt BV, Anderson PS et al (1989) A structurally unique, potent, and selective oxytocin antagonist derived from Streptomyces silvensis. Endocrinology 125:217–222PubMedCrossRefPubMedCentralGoogle Scholar
  189. Pishko EJ, Kirkland TN, Cole GT (1995) Isolation and characterization of two chitinase-encoding genes (cts1, cts2) from the fungus Coccidioides immitis. Gene 167:173–177PubMedCrossRefPubMedCentralGoogle Scholar
  190. Prajapati VD, Jani GK, Zala BS, Khutliwala TA (2013) An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr Polym 93:670–678.  https://doi.org/10.1016/j.carbpol.2013.01.030CrossRefPubMedPubMedCentralGoogle Scholar
  191. Raee MJ, Ghasemian A, Maghami S, Ghoshoon MB, Ghasemi Y (2017) Cloning, purification and enzymatic assay of streptokinase gene from Streptococcus pyogenes in Escherichia coli. Minerva Biotecnologica 29:8–13Google Scholar
  192. Raghunandan K, Kumar A, Kumar S, Permaul K, Singh S (2018) Production of gellan gum, an exopolysaccharide, from biodiesel-derived waste glycerol by Sphingomonas spp. 3 Biotech 8:71.  https://doi.org/10.1007/s13205-018-1096-3CrossRefPubMedPubMedCentralGoogle Scholar
  193. Ramundo J, Gray M (2008) Enzymatic wound debridement. J Wound Ostomy Continence Nurs 35:273–280.  https://doi.org/10.1097/01.WON.0000319125.21854.78CrossRefPubMedPubMedCentralGoogle Scholar
  194. Ray RR (2004) Beta-amylases from various fungal strains. A review. Acta Microbiol Immunol Hung 51:85–95.  https://doi.org/10.1556/AMicr.51.2004.1-2.6CrossRefPubMedPubMedCentralGoogle Scholar
  195. Rittié L, Perbal B (2008) Enzymes used in molecular biology: a useful guide. J Cell Commun Signal 2:25–45.  https://doi.org/10.1007/s12079-008-0026-2CrossRefPubMedPubMedCentralGoogle Scholar
  196. Ro DK, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943.  https://doi.org/10.1038/nature04640CrossRefPubMedPubMedCentralGoogle Scholar
  197. Rodrigues LR (2015) Microbial surfactants: fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J Colloid Interface Sci 449:304–316.  https://doi.org/10.1016/j.jcis.2015.01.022CrossRefPubMedPubMedCentralGoogle Scholar
  198. Rodriguez GM, Tashiro Y, Atsumi S (2014) Expanding ester biosynthesis in Escherichia coli. Nat Chem Biol 10:259–265.  https://doi.org/10.1038/nchembio.1476CrossRefPubMedPubMedCentralGoogle Scholar
  199. Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23:545–557.  https://doi.org/10.1016/j.tim.2015.05.005CrossRefPubMedPubMedCentralGoogle Scholar
  200. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58PubMedPubMedCentralGoogle Scholar
  201. Ruggaber TP, Talley JW (2006) Enhancing bioremediation with enzymatic processes: a review. Pract Period Hazard Toxic Radioact Waste Manage 10:73–85CrossRefGoogle Scholar
  202. Rutledge PJ, Challis GL (2015) Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 13:509–523.  https://doi.org/10.1038/nrmicro3496CrossRefPubMedPubMedCentralGoogle Scholar
  203. Sadanari H, Murayama T, Zheng X, Yamada R, Matsubara K, Yoshida H, Takahashi T (2013) Inhibitory effects of statins on expression of immediate–early 1 protein of human cytomegalovirus in virus-infected cells. J Exp Clin Med 5:187–193.  https://doi.org/10.1016/j.jecm.2013.08.001CrossRefGoogle Scholar
  204. Sakula A (1988) Selman Waksman (1888–1973), discoverer of streptomycin: a centenary review. Brit J Dis Chest 82:23–31.  https://doi.org/10.1016/0007-0971(88)90005-8CrossRefPubMedPubMedCentralGoogle Scholar
  205. Sakurai Y, Inoue H, Nishii W, Takahashi T, Iino Y, Yamamoto M, Takahashi K (2009) Purification and characterization of a major collagenase from Streptomyces parvulus. Biosci Biotechnol Biochem 73:21–28.  https://doi.org/10.1271/bbb.80357CrossRefPubMedPubMedCentralGoogle Scholar
  206. Sallam LAR, El-Refai AH, Hamdi AA, El-Minofi AH, Abd-Elsalam SI (2003) Role of some fermentation parameters on cyclosporin A production by a new isolate of A. terreus. J Gen Appl Microbiol 49:321–328PubMedCrossRefPubMedCentralGoogle Scholar
  207. Santerre Henriksen AL, Carlsen M, de Bang H, Nielsen J (1999) Kinetics of alpha-amylase secretion in Aspergillus oryzae. Biotechnol Bioeng 65(1):76–82PubMedCrossRefPubMedCentralGoogle Scholar
  208. Sarwar G, Matayoshi S, Oda H (1987) Purification of κ-carrageenase from marine Cytophaga species. Microbiol Immunol 31:869–877PubMedCrossRefPubMedCentralGoogle Scholar
  209. Sarwat F, Ul-Qader SA, Aman A, Ahmed N (2008) Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. Int J Biol Sci 4:379–386PubMedPubMedCentralCrossRefGoogle Scholar
  210. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108.  https://doi.org/10.1016/j.tibtech.2007.11.006CrossRefPubMedPubMedCentralGoogle Scholar
  211. Sawai K, Okuno T, Terada Y, Harada Y, Sawamura K, Sasaki H, Takao S (1981) Isolation and properties of two antifungal substances from Fusarium solani. Agric Biol Chem 45:1223–1228Google Scholar
  212. Scanlon TC, Dostal SM, Griswold KE (2014) A high-throughput screen for antibiotic drug discovery. Biotechnol Bioeng 111:232–243.  https://doi.org/10.1002/bit.25019CrossRefPubMedPubMedCentralGoogle Scholar
  213. Schmid J, Meyer V, Sieber V (2011) Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Appl Microbiol Biotechnol 91:937–947.  https://doi.org/10.1007/s00253-011-3438-5CrossRefPubMedPubMedCentralGoogle Scholar
  214. Seidl V, Huemer B, Seiboth B, Kubicek CP (2005) A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923–5939.  https://doi.org/10.1111/j.1742-4658.2005.04994.xCrossRefPubMedPubMedCentralGoogle Scholar
  215. Seshime Y, Juvvadi PR, Fujii I, Kitamoto K (2005) Discovery of a novel superfamily of type III polyketide synthases in Aspergillus oryzae. Biochem Biophys Res Commun 331:253–260.  https://doi.org/10.1016/j.bbrc.2005.03.160CrossRefPubMedPubMedCentralGoogle Scholar
  216. Shao Z, Zhao H, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16.  https://doi.org/10.1093/nar/gkn991CrossRefPubMedPubMedCentralGoogle Scholar
  217. Sharma A, Tewari R, Rana SS, Soni R, Soni SK (2016) Cellulases: classification, methods of determination and industrial applications. Appl Biochem Biotechnol 179:1346–1380.  https://doi.org/10.1007/s12010-016-2070-3CrossRefPubMedPubMedCentralGoogle Scholar
  218. Shen B (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol 7:285–295.  https://doi.org/10.1016/S1367-5931(03)00020-6CrossRefPubMedPubMedCentralGoogle Scholar
  219. Sheng J, Ling P, Wang F (2015) Constructing a recombinant hyaluronic acid biosynthesis operon and producing food-grade hyaluronic acid in Lactococcus lactis. J Ind Microbiol Biotechnol 42:197–206.  https://doi.org/10.1007/s10295-014-1555-8CrossRefPubMedPubMedCentralGoogle Scholar
  220. Shi TQ, Peng H, Zeng SY, Ji RY, Shi K, Huang H, Ji XJ (2017) Microbial production of plant hormones: opportunities and challenges. Bioengineered 8:124–128.  https://doi.org/10.1080/21655979.2016.1212138CrossRefPubMedPubMedCentralGoogle Scholar
  221. Shimada N, Yagisawa N, Naganawa H, Takita T, Hamada M, Takeuchi T, Umezawa H (1981) Oxanosine, a novel nucleoside from actinomycetes. J Antibiot 34:1216–1218PubMedCrossRefPubMedCentralGoogle Scholar
  222. Shirazian P, Asad S, Amoozegar MA (2016) The potential of halophilic and halotolerant bacteria for the production of antineoplastic enzymes: L-asparaginase and L-glutaminase. EXCLI J 15:268–279.  https://doi.org/10.17179/excli2016-146CrossRefPubMedPubMedCentralGoogle Scholar
  223. Shivange AV, Marienhagen J, Mundhada H, Schenk A, Schwaneberg U (2009) Advances in generating functional diversity for directed protein evolution. Curr Opin Chem Biol 13:19–25.  https://doi.org/10.1016/j.cbpa.2009.01.019CrossRefPubMedPubMedCentralGoogle Scholar
  224. Sidhu GS, Sharma P, Chakrabarti T, Gupta JK (1997) Strain improvement for the production of a thermostable α-amylase. Enzyme Microb Technol 21:525–530.  https://doi.org/10.1016/S0141-0229(97)00055-0CrossRefGoogle Scholar
  225. Silbir S, Dagbagli S, Yegin S, Baysal T, Goksungur Y (2014) Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Carbohydr Polym 99:454–461.  https://doi.org/10.1016/j.carbpol.2013.08.031CrossRefPubMedPubMedCentralGoogle Scholar
  226. Sinsuwan S, Yongsawatdigul J, Chumseng S, Yamabhai M (2012) Efficient expression and purification of recombinant glutaminase from Bacillus licheniformis (GlsA) in Escherichia coli. Protein Expr Purif 83:52–58.  https://doi.org/10.1016/j.pep.2012.03.001CrossRefPubMedPubMedCentralGoogle Scholar
  227. Siriwardana LS, Gall AR, Buller CS, Esch SW, Kenyon WJ (2011) Factors affecting accumulation and degradation of curdlan, trehalose and glycogen in cultures of Cellulomonas flavigena strain KU (ATCC 53703). Antonie Van Leeuwenhoek 99:681–695.  https://doi.org/10.1007/s10482-010-9544-zCrossRefPubMedPubMedCentralGoogle Scholar
  228. Song MC, Kim EJ, Kim E, Rathwell K, Nam SJ, Yoon YJ (2014) Microbial biosynthesis of medicinally important plant secondary metabolites. Nat Prod Rep 31:1497–1509.  https://doi.org/10.1039/c4np00057aCrossRefPubMedPubMedCentralGoogle Scholar
  229. Spízek J, Rezanka T (2004) Lincomycin, cultivation of producing strains and biosynthesis. Appl Microbiol Biotechnol 63:510–519.  https://doi.org/10.1007/s00253-003-1431-3CrossRefPubMedPubMedCentralGoogle Scholar
  230. Strauss BH, Goldman L, Qiang B et al (2003) Collagenase plaque digestion for facilitating guide wire crossing in chronic total occlusions. Circulation 108(10):1259–1262.  https://doi.org/10.1161/01.CIR.0000086320.24172.A1CrossRefPubMedPubMedCentralGoogle Scholar
  231. Stubbe JA, Kozarich JW (1987) Mechanisms of bleomycin-induced DNA degradation. Chem Rev 87:1107–1136.  https://doi.org/10.1021/cr00081a011CrossRefGoogle Scholar
  232. Su L, Ma Y, Wu J (2015) Extracellular expression of natural cytosolic arginine deiminase from Pseudomonas putida and its application in the production of L-citrulline. Bioresour Technol 196:176–183.  https://doi.org/10.1016/j.biortech.2015.07.081CrossRefPubMedPubMedCentralGoogle Scholar
  233. Suda H, Aoyagi T, Hamada M, Takeuchi T, Umezawa H (1972) Antipain, a new protease inhibitor isolated from actinomycetes. J Antibiot (Tokyo) 25:263–266CrossRefGoogle Scholar
  234. Survase SA, Kagliwal LD, Annapure US, Singhal RS (2011) Cyclosporin A – A review on fermentative production, downstream processing and pharmacological applications. Biotechnol Adv 29:418–435.  https://doi.org/10.1016/j.biotechadv.2011.03.004CrossRefPubMedPubMedCentralGoogle Scholar
  235. Takeuchi T, Iwanaga J, Aoyagi T, Umezawa H (1996) Antiviral effect of formycin and formycin B. J Antibiot (Tokyo) 19(6):286–287Google Scholar
  236. Takizawa N, Yamasaki M (2017) Current landscape and future prospects of antiviral drugs derived from microbial products. J Antibiot (Tokyo).  https://doi.org/10.1038/ja.2017.115CrossRefGoogle Scholar
  237. Tan S, Liu ZP (2015) Natural products as zinc-dependent histone deacetylase inhibitors. ChemMedChem 10:441–450.  https://doi.org/10.1002/cmdc.201402460CrossRefPubMedPubMedCentralGoogle Scholar
  238. Tanokura M, Miyakawa T, Guan L, Hou F (2015) Structural analysis of enzymes used for bioindustry and bioremediation. Biosci Biotechnol Biochem 79:1391–1401.  https://doi.org/10.1080/09168451.2015.1052770CrossRefPubMedPubMedCentralGoogle Scholar
  239. Temuujin U, Chi WJ, Lee SY, Chang YK, Hong SK (2011) Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Appl Microbiol Biotechnol 92:749–759.  https://doi.org/10.1007/s00253-011-3347-7CrossRefPubMedPubMedCentralGoogle Scholar
  240. Theron LW, Divol B (2014) Microbial aspartic proteases: current and potential applications in industry. Appl Microbiol Biotechnol 98:8853–8868.  https://doi.org/10.1007/s00253-014-6035-6CrossRefPubMedPubMedCentralGoogle Scholar
  241. Thomas A, Bayat A (2010) The emerging role of Clostridium histolyticum collagenase in the treatment of Dupuytren disease. Ther Clin Risk Manag 6:557–572.  https://doi.org/10.2147/TCRM.S8591CrossRefPubMedPubMedCentralGoogle Scholar
  242. Tsujibo H, Orikoshi H, Tanno H et al (1993) Cloning, sequence, and expression of a chitinase gene from a marine bacterium, Altermonas sp. strain O-7. J Bacteriol 175(1):176–181.  https://doi.org/10.1128/jb.175.1.176-181.1993CrossRefPubMedPubMedCentralGoogle Scholar
  243. Tsuruoka N, Nakayama T, Ashida M et al (2003) Collagenolytic serine-carboxyl proteinase from Alicyclobacillus sendaiensis strain NTAP-1: purification, characterization, gene cloning, and heterologous expression. Appl Environ Microbiol 69(1):162–169PubMedPubMedCentralCrossRefGoogle Scholar
  244. Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2015) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52:4669–4678.  https://doi.org/10.1007/s13197-014-1601-6CrossRefPubMedPubMedCentralGoogle Scholar
  245. Uehara Y, Hori M, Takeuchi T, Umezawa H (1986) Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accompanies inactivation of p60src in rat kidney cells infected with Rous sarcoma virus. Mol Cell Biol 6(6):2198–2206PubMedPubMedCentralCrossRefGoogle Scholar
  246. Uehara Y, Murakami Y, Mizuno S, Kawalt S (1988) Inhibition of transforming activity of tyrosine kinase oncogenes by herbimycin A. Virology 164(1):294–298PubMedCrossRefPubMedCentralGoogle Scholar
  247. Ul-Qader SA, Iqbal L, Rizvi HA, Zuberi R (2001) Production of dextran from sucrose by a newly isolated strain of Leuconostoc mesenteroides (PCSIR-3) with reference to L. mesenteroides NRRL B-512F. Biotechnol Appl Biochem 34(Pt 2):93–97PubMedCrossRefPubMedCentralGoogle Scholar
  248. Umezawa H, Aoyagi T, Morishima H, Matsuzaki M, Hamada M (1970) Pepstatin, a new pepsin inhibitor produced by Actinomycetes. J Antibiot (Tokyo) 23(5):259–262CrossRefGoogle Scholar
  249. Umezawa H, Aoyagi T, Okura A, Morishima H, Takeuchi T (1973) Elastatinal, a new elastase inhibitor produced by actinomycetes. J Antibiot (Tokyo) 26:787–789CrossRefGoogle Scholar
  250. Umezawa H, Aoyagi T, Komiyama T, Morishima H, Hamada M (1974) Purification and characterization of a sialidase inhibitor, siastatin, produced by Streptomyces. J Antibiot (Tokyo) 27(12):963–969CrossRefGoogle Scholar
  251. Umezawa H, Aoyagi T, Ogawa K et al (1985) Foroxymithine, a new inhibitor of angiotensin-converting enzyme, produced by actinomycetes. J Antibiot (Tokyo) 38(12):1813–1815CrossRefGoogle Scholar
  252. Upadhyay P, Shrivastava R, Agrawal PK (2016) Bioprospecting and biotechnological applications of fungal laccase. 3. Biotech 6:15.  https://doi.org/10.1007/s13205-015-0316-3CrossRefGoogle Scholar
  253. Urtuvia V, Maturana N, Acevedo F, Peña C, Díaz-Barrera A (2017) Bacterial alginate production: an overview of its biosynthesis and potential industrial production. World J Microbiol Biotechnol 33(11):198.  https://doi.org/10.1007/s11274-017-2363-xCrossRefPubMedPubMedCentralGoogle Scholar
  254. Valera MJ, Torija MJ, Mas A, Mateo E (2015) Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Appl Microbiol Biotechnol 99:1349–1361.  https://doi.org/10.1007/s00253-014-6198-1CrossRefPubMedPubMedCentralGoogle Scholar
  255. Van Lanen SG, Shen B (2008) Biosynthesis of enediyne antitumor antibiotics. Curr Top Med Chem 8(6):448–459PubMedPubMedCentralCrossRefGoogle Scholar
  256. Vandamme EJ (1994) The search for novel microbial fine chemicals, agrochemicals and biopharmaceuticals. J Biotechnol 37(2):89–108PubMedCrossRefPubMedCentralGoogle Scholar
  257. Vasanthabharathi V, Lakshminarayanan R, Jayalakshmi S (2011) Melanin production from marine Streptomyces. Afr J Biotechnol 10:11224–11234.  https://doi.org/10.5897/AJB11.296CrossRefGoogle Scholar
  258. Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079.  https://doi.org/10.1016/j.procbio.2013.06.006CrossRefGoogle Scholar
  259. Vesselinova N, Gesheva R, Ivanova V (1991) Streptomyces species producing the streptovaricin complex. Folia Microbiol (Praha) 36(6):538–541CrossRefGoogle Scholar
  260. Vijayendra SV, Shamala TR (2014) Film forming microbial biopolymers for commercial applications - a review. Crit Rev Biotechnol 34(4):338–357.  https://doi.org/10.3109/07388551.2013.798254CrossRefPubMedPubMedCentralGoogle Scholar
  261. Waksman SA, Woodruff HB (1940) Bacteriostatic and bactericidal substances produced by a soil Actinomyces. Proc Soc Exp Biol Med 45:609–614.  https://doi.org/10.3181/00379727-45-11768CrossRefGoogle Scholar
  262. Wang J, Guleria S, Koffas MAG, Yan Y (2016) Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37:97–104.  https://doi.org/10.1016/j.copbio.2015.11.003CrossRefPubMedPubMedCentralGoogle Scholar
  263. Wang J, Shen X, Rey J, Yuan Q, Yan Y (2018) Recent advances in microbial production of aromatic natural products and their derivatives. Appl Microbiol Biotechnol 102:47–61.  https://doi.org/10.1007/s00253-017-8599-4CrossRefPubMedPubMedCentralGoogle Scholar
  264. Westers L, Dijkstra DS, Westers H, van Dijl JM, Quax WJ (2006) Secretion of functional human interleukin-3 from Bacillus subtilis. J Biotechnol 123(2):211–224.  https://doi.org/10.1016/j.jbiotec.2005.11.007CrossRefPubMedPubMedCentralGoogle Scholar
  265. Wiemann P, Keller NP (2014) Strategies for mining fungal natural products. J Ind Microbiol Biotechnol 41:301–313.  https://doi.org/10.1007/s10295-013-1366-3CrossRefPubMedPubMedCentralGoogle Scholar
  266. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433.  https://doi.org/10.1016/j.tibs.2010.05.003CrossRefPubMedPubMedCentralGoogle Scholar
  267. Wong TY, Preston LA, Schiller NL (2000) Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 54:289–340.  https://doi.org/10.1146/annurev.micro.54.1.289CrossRefPubMedPubMedCentralGoogle Scholar
  268. Wu Z, Wei LX, Li J, Wang Y, Ni D, Yang P, Zhang Y (2009) Percutaneous treatment of non-contained lumbar disc herniation by injection of oxygen-ozone combined with collagenase. Eur J Radiol 72:499–504.  https://doi.org/10.1016/j.ejrad.2008.07.029CrossRefPubMedPubMedCentralGoogle Scholar
  269. Wu Q, Li C, Li C, Chen H, Shuliang L (2010) Purification and characterization of a novel collagenase from Bacillus pumilus Col-J. Appl Biochem Biotechnol 160(1):129–139.  https://doi.org/10.1007/s12010-009-8673-1CrossRefPubMedPubMedCentralGoogle Scholar
  270. Xiaoke H, Xiaolu J, Huashi G (2003) Isolation of protoplasts from Undaria pinnatifida by alginate lyase digestion. J Ocean U Qingdao 2(1):58–61Google Scholar
  271. Xiong L, Teng JL, Botelho MG, Lo RC, Lau SK, Woo PC (2016) Arginine metabolism in bacterial pathogenesis and cancer therapy. Int J Mol Sci 17(3):363.  https://doi.org/10.3390/ijms17030363CrossRefPubMedPubMedCentralGoogle Scholar
  272. Xu J, Li W, Wu J, Zhang Y, Zhu Z, Liu J, Hu Z (2006) Stability of plasmid and expression of a recombinant gonadotropin-releasing hormone (GnRH) vaccine in Escherichia coli. Appl Microbiol Biotechnol 73(4):780–788PubMedCrossRefPubMedCentralGoogle Scholar
  273. Xu D, Yao H, Xu Z et al (2017) Production of ε-poly-lysine by Streptomyces albulus PD-1 via solid-state fermentation. Bioresour Technol 223:149–156.  https://doi.org/10.1016/j.biortech.2016.10.032CrossRefPubMedPubMedCentralGoogle Scholar
  274. Yang G, Withers SG (2009) Ultrahigh-throughput FACS-based screening for directed enzyme evolution. ChemBioChem 10:2704–2715.  https://doi.org/10.1002/cbic.200900384CrossRefPubMedPubMedCentralGoogle Scholar
  275. Yang JI, Chen LC, Shih YY, Hsieh C, Chen CY, Chen WM, Chen CC (2011) Cloning and characterization of β-agarase AgaYT from Flammeovirga yaeyamensis strain YT. J Biosci Bioeng 112(3):225–232.  https://doi.org/10.1016/j.jbiosc.2011.05.016CrossRefPubMedPubMedCentralGoogle Scholar
  276. Yang M, Zhu Y, Li Y et al (2016) Production and optimization of curdlan produced by Pseudomonas sp. QL212. Int J Biol Macromol 89:25–34.  https://doi.org/10.1016/j.ijbiomac.2016.04.027CrossRefPubMedPubMedCentralGoogle Scholar
  277. Yang J, Li W, Ng TB, Deng X, Lin J, Ye X (2017) Laccases: production, expression regulation, and applications in pharmaceutical biodegradation. Front Microbiol 8:832.  https://doi.org/10.3389/fmicb.2017.00832CrossRefPubMedPubMedCentralGoogle Scholar
  278. Yao Z, Wang F, Gao Z, Jin L, Wu H (2013) Characterization of a κ-carrageenase from marine Cellulophaga lytica strain N5-2 and analysis of its degradation products. Int J Mol Sci 14:24592–24602.  https://doi.org/10.3390/ijms141224592CrossRefPubMedPubMedCentralGoogle Scholar
  279. Yazdi MT, Yazdi ZT, Ghasemian A, Zarrini G, Olyaee NH, Sepehrizadeh Z (2008) Purification and characterization of extra-cellular cholesterol oxidase from Rhodococcus sp. PTCC 1633. Biotechnology 7:751–756.  https://doi.org/10.3923/biotech.2008.751.756CrossRefGoogle Scholar
  280. Yoshimura T, Shibata N, Hamano Y, Yamanaka K (2015) Heterologous production of hyaluronic acid in an ε-poly-l-lysine producer, Streptomyces albulus. Appl Environ Microbiol 81:3631–3640.  https://doi.org/10.1128/AEM.00269-15CrossRefPubMedPubMedCentralGoogle Scholar
  281. Youssef AS, Beltagy EA, El-Shenawy MA, El-Assar SA (2012) Production of κ-carrageenase by Cellulosimicrobium cellulans isolated from Egyptian Mediterranean coast. Afr J Microbiol Res 6:6618–6628.  https://doi.org/10.5897/AJMR12.517CrossRefGoogle Scholar
  282. Yu H, Stephanopoulos G (2008) Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab Eng 10:24–32.  https://doi.org/10.1016/j.ymben.2007.09.001CrossRefPubMedPubMedCentralGoogle Scholar
  283. Yuan Y (2014) Natural product chemokine receptor antagonists: what mother nature has offered us? Curr Top Med Chem 14:1619–1634PubMedCrossRefPubMedCentralGoogle Scholar
  284. Zhang C, Kim SK (2012) Application of marine microbial enzymes in the food and pharmaceutical industries. Adv Food Nutr Res 65:423–435.  https://doi.org/10.1016/B978-0-12-416003-3.00028-7CrossRefPubMedPubMedCentralGoogle Scholar
  285. Zhang L, Yang Y, Sun J, Shen Y, Wei D, Zhu J, Chu J (2010) Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour Technol 101:1961–1967.  https://doi.org/10.1016/j.biortech.2009.10.052CrossRefPubMedPubMedCentralGoogle Scholar
  286. Zhang X, Zhang R, Bao T et al (2014) The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab Eng 23:34–41.  https://doi.org/10.1016/j.ymben.2014.02.002CrossRefPubMedPubMedCentralGoogle Scholar
  287. Zhang J, Dong YC, Fan LL, Jiao ZH, Chen QH (2015a) Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis. Carbohydr Polym 115:694–700.  https://doi.org/10.1016/j.carbpol.2014.09.029CrossRefPubMedPubMedCentralGoogle Scholar
  288. Zhang XY, Han XX, Chen XL et al (2015b) Diversity of cultivable protease-producing bacteria in sediments of Jiaozhou Bay, China. Front Microbiol 6:1021.  https://doi.org/10.3389/fmicb.2015.01021CrossRefPubMedPubMedCentralGoogle Scholar
  289. Zhou YP, Ren XD, Wang L, Chen XS, Mao ZG, Tang L (2015) Enhancement of ε-poly-lysine production in ε-poly-lysine-tolerant Streptomyces sp. by genome shuffling. Bioprocess Biosyst Eng 38:1705–1713.  https://doi.org/10.1007/s00449-015-1410-yCrossRefPubMedPubMedCentralGoogle Scholar
  290. Zhu B, Ning L (2016) Purification and characterization of a new κ-carrageenase from the marine bacterium Vibrio sp. NJ-2. J Microbiol Biotechnol 26:255–262.  https://doi.org/10.4014/jmb.1507.07052CrossRefPubMedPubMedCentralGoogle Scholar
  291. Zhu B, Yin H (2015) Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 6(3):125–131.  https://doi.org/10.1080/21655979.2015.1030543CrossRefPubMedPubMedCentralGoogle Scholar
  292. Ziayoddin M, Lalitha J, Shinde M (2014) Increased production of carrageenase by Pseudomonas aeruginosa ZSL-2 using taguchi experimental design. Int Lett Nat Sci 17:194–207.  https://doi.org/10.18052/www.scipress.com/ILNS.17.194CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Fatemeh Dabbagh
    • 1
  • Zahra Moradpour
    • 2
  • Abdollah Ghasemian
    • 2
    Email author
  1. 1.Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of PharmacyHormozgan University of Medical SciencesBandar AbbasIran
  2. 2.Department of Pharmaceutical Biotechnology, Faculty of PharmacyUrmia University of Medical ScienceUrmiaIran

Personalised recommendations