Influence of Endophytic Bacteria on Growth Promotion and Protection against Diseases in Associated Plants

  • Karivaradharajan SwarnalakshmiEmail author
  • Sushmita Rajkhowa
  • Murugesan Senthilkumar
  • Dolly Wattal Dhar


Plants are colonized by different endophytic microbial communities. These endophytic microbiomes have been reportedly associated with improved growth, metabolism and defence against other physical factors. The endophytic population varies with plant species, genotypes and crop growth stages. They contribute plant growth promotion through nitrogen (N) fixation, phosphate solubilization and phytohormone production. Several phytohormones, such as indole-3-acetic acid (IAA), gibberellins (GA) and cytokinins (CK), synthesized by the plant endophytes can enhance different stages of plant growth, such as root formation, stimulation of cell division, extension, differentiation and regulation of fruit ripening. The low-molecular-weight siderophore molecules produced by these endophytes show high affinity for ferrous iron. Endophytes aid in the host’s survival against biotic stress by the production of HCN and secondary metabolites that suppress the soilborne pathogens. They also enhance plant fitness by producing novel bioactive compounds. Different kinds of alkaloids produced by the endophytes also provide resistance to plants against environmental stresses. The amines and amides produced by the plant endophytes have shown toxic effects to insects. The endophytic bacteria can trigger strawberry flavour. Advanced techniques, such as metagenomics based on next-generation sequencing is useful to study the taxonomical diversity of microbial communities associated with the economically and agriculturally important crops. This chapter reviews the important role of plant-associated bacterial endophytes in agricultural crops.


Endophytes Microbiome Plant growth promotion Antibiosis Bioactive molecules 


  1. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113(5):1139–1144PubMedCrossRefPubMedCentralGoogle Scholar
  3. Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180PubMedCrossRefPubMedCentralGoogle Scholar
  4. Annapurna K, Ramadoss D, Bose P, VithalKumar L (2013) In situ localization of Paenibacillus polymyxa HKA-15 in roots and root nodules of soybean (Glycine max.L.). Plant Soil 373:641–648CrossRefGoogle Scholar
  5. Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67CrossRefGoogle Scholar
  6. Araujo WL, Lacava PT, Andreote FD, Azevedo JL (2008) Interaction between endophytes and plant host: biotechnological aspects. Mol Plant-Microbe Interact:95–115Google Scholar
  7. Aravind R, Kumar A, Eapen SJ, Ramana KV (2009) Endophytic bacterial flora ini root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett Appl Microbiol 48:58–64PubMedCrossRefPubMedCentralGoogle Scholar
  8. Arsac JF, Lamothe C, Mulard D, Fages J (1990) Growth enhancement of maize (Zea mays L) through Azospirillum lipoferum inoculation: effect of plant genotype and bacterial concentration. Agronomie 10(8):649–654CrossRefGoogle Scholar
  9. Bacon CW, White J (eds) (2000) Microbial endophytes. Marcel Deker, New York, p 487Google Scholar
  10. Bai Y, D’Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48(3):230–238PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol Biochem 19(4):451–457CrossRefGoogle Scholar
  12. Baldani J, Caruso L, Baldani VL, Goi SR, Dobereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29(5):911–922CrossRefGoogle Scholar
  13. Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bar-Ness E, Hadar Y, Chen Y, Romheld V, Marschner H (1992) Short-term effects of rhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat. Plant Physiol 100(1):451–456PubMedPubMedCentralCrossRefGoogle Scholar
  15. Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194(1–2):15–24CrossRefGoogle Scholar
  16. Bastian F, Cohen A, Piccoli P, Luna V, Bottini R, Baraldi R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24(1):7–11CrossRefGoogle Scholar
  17. Beijerinck MW, Van Delden A (1902) Ueber die Assimilation des freien Stickstoffs durch Bakterien. Central blatt fur Bakteriologie Parasitenkunde und Infektionskrankheiten 9:3–43Google Scholar
  18. Benhizia Y, Benhizia H, Benguedouar A, Muresu R, Giacomini A, Squartini A (2004) Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst Appl Microbiol 27:462–468PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152CrossRefGoogle Scholar
  20. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486PubMedPubMedCentralCrossRefGoogle Scholar
  21. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 6:1–13CrossRefGoogle Scholar
  22. Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173(3):170–177PubMedCrossRefPubMedCentralGoogle Scholar
  23. Boddey RM, de Oliveira OC, Urquiaga S, Reis VM, Olivares FL, Baldani VLD, Dobereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209CrossRefGoogle Scholar
  24. Boddey RM, Urquiaga S, Alves BJ, Reis V (2001) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252(1):139–149CrossRefGoogle Scholar
  25. Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Biol 46(1):189–214CrossRefGoogle Scholar
  26. Brandl MT, Lindow SE (1998) Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Appl Environ Microbiol 64(9):3256–3263PubMedPubMedCentralGoogle Scholar
  27. Bultman TL, Murphy JC (2000) Do fungal endophytes mediate wound-induced resistance? In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, Inc., New York, pp 412–453Google Scholar
  28. Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276(1):1–11PubMedCrossRefPubMedCentralGoogle Scholar
  29. Chanway CP, Holl FB (1994) Ecological growth response specificity of two Douglas-fir ecotypes inoculated with coexistent beneficial rhizosphere bacteria. Can J Bot 72(5):582–586CrossRefGoogle Scholar
  30. Chanway CP, Shishido M, Nairn J, Jungwirth S, Markham J, Xiao G, Holl FB (2000) Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. Forest Ecol Manag 133(1):81–88CrossRefGoogle Scholar
  31. Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2009) Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus. Eur J Soil Biol 45:114–122CrossRefGoogle Scholar
  32. Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462CrossRefGoogle Scholar
  33. Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E (2003) Endophytic colonization of Vitis vinifera. by plant growth-promoting bacterium burkholderia sp. strain psjn. Appl Environ Microbiol 71:1685–1693CrossRefGoogle Scholar
  34. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles mechanisms of action and future prospects. Appl Environ Microbiol 71(9):4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  35. Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role colonization mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678CrossRefGoogle Scholar
  36. Conn VM, Franco CM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 70(11):6407–6413PubMedPubMedCentralCrossRefGoogle Scholar
  37. Conn KL, Lazarovits G, Nowak J (1997) Agnotobiotic bioassay for studying interactions between potatoes and plant growth-promoting rhizobacteria. Can J Microbiol 43(9):801–808CrossRefGoogle Scholar
  38. Coombs JT, Michelson PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as an antagonist of Gaeumannomyces graminis var tritici in wheat. Biol Control 29:3899–3905CrossRefGoogle Scholar
  39. Costa JM, Loper JE (1994) Characterization of siderophore production by the biological control agent Enterobacter cloacae. Mol Plant-Microbe Interact 7(4):440–448CrossRefGoogle Scholar
  40. Coutinho BG, Licastro D, Mendonca-Previato L, Camara M, Venturi V (2015) Plant influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Mol Plant-Microbe Interact 28(1):10–21PubMedCrossRefPubMedCentralGoogle Scholar
  41. Dalal JM, Kulkarni NS, Bodhankar MG (2014) Utilization of indigenous endophytic microbes for induction of systemic resistance (ISR) in soybean (Glycine Max (L) Merril)against challenge inoculation with F. oxysporum. Res Biotechnol 6(1):70–84Google Scholar
  42. Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E, Kennedy C (2004) Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol Ecol 49(3):469–479PubMedCrossRefPubMedCentralGoogle Scholar
  43. De Bary A (1866) Morphologie und physiologie der plize Flechten und Myxomyceten. Englemann, Leipzig. Scholar
  44. De Boer SH, Copeman RJ (1974) Endophytic bacterial flora in Solanum tuberosum and its significance in bacterial ring rot diagnosis. Can J Plant Sci 54(1):115–122CrossRefGoogle Scholar
  45. de Jager V, Siezen RJ (2011) Single-cell genomics: unravelling the genomes of unculturable microorganisms. Microb Biotechnol 4(4):431–437PubMedPubMedCentralCrossRefGoogle Scholar
  46. Devi KK, Seth N, Kothamasi S, Kothamasi D (2007) Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (rambur) by cyanide poisoning under in-vitro conditions. Curr Microbiol 54(1):74–78PubMedCrossRefPubMedCentralGoogle Scholar
  47. Ding L, Maier A, Fiebig HH, Lin WH, Hertweck C (2011) A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org Biomol Chem 9:4029–4031PubMedCrossRefPubMedCentralGoogle Scholar
  48. Dobbelaere S, Croonenborghs A, Thys A, Broek AV, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212(2):153–162CrossRefGoogle Scholar
  49. Dobereiner J, Reis VM, Paula MA, Olivares FD (1992) Endophytic diazotrophs in sugarcane cereals and tuber plants. In: New horizons in nitrogen fixation. Springer, Dordrecht, pp 671–676Google Scholar
  50. Dobereiner J, Baldani VL, Reis VM (1995a) Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In: Azospirillum VI and related microorganisms. Springer, Berlin/Heidelberg, pp 3–14CrossRefGoogle Scholar
  51. Dobereiner J, Urquiaga S, Boddey RM (1995b) Alternatives for nitrogen nutrition of crops in tropical agriculture. Fertil Res 42:339–346CrossRefGoogle Scholar
  52. Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66(7):2804–2810PubMedPubMedCentralCrossRefGoogle Scholar
  53. Dudeja SS (2016) Beneficial effects and molecular diversity of endophytic bacteria in legume and nonlegumes. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 245–256CrossRefGoogle Scholar
  54. Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microbiol 52(3):248–260PubMedCrossRefPubMedCentralGoogle Scholar
  55. Edwards J, Johnsona C, Santos-Medellína C, Luriea E, Podishettyb NK, Bhatnagarc S, Eisenc JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS 112:911–920CrossRefGoogle Scholar
  56. Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato Y, Morisaki H, Mitsui H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. J Soil Sci Plant Nutr 46(3):617–629CrossRefGoogle Scholar
  57. Elvira-Recuenco M, Van Vuurde JWL (2000) Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol 46(11):1036–1041PubMedCrossRefPubMedCentralGoogle Scholar
  58. Flaishman MA, Eyal Z, Zilberstein A, Voisard C, Haas D (1996) Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida. Mol Plant-Microbe Interact 9(7):642–645CrossRefGoogle Scholar
  59. Fouchet P, Jayat C, Héchard Y, Ratinaud MH, Frelat G (1993) Recent advances of flow cytometry in fundamental and applied microbiology. Biol Cell 78:95–109PubMedCrossRefPubMedCentralGoogle Scholar
  60. Frommel MI, Nowak J, Lazorovits G (1993) Treatment of potato tubers with a growth promoting Pseudomonas sp.: plant growth responses and bacterium distribution in the rhizosphere. Plant Soil 150:51–60CrossRefGoogle Scholar
  61. Gagne S, Richard C, Rousseau H, Antoun H (1987) Xylem-residing bacteria in alfalfa roots. Can J Microbiol 33(11):996–1000CrossRefGoogle Scholar
  62. Gao Z, Zhuang J, Chen J, Liu X, Tang S (2004) Population of entophytic bacteria in maize roots and its dynamic analysis. J Appl Ecol 15(8):1344–1348Google Scholar
  63. Gao FK, Dai CC, Liu XZ (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4(13):1346–1351Google Scholar
  64. Garbeva P, Van Overbeek LS, Van Vuurde JWL, Van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41(4):369–383PubMedCrossRefPubMedCentralGoogle Scholar
  65. Germida JJ, Siciliano SD, Freitas J, Seib AM (1998) Diversity of root-associated bacteria associated with fieldgrown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50CrossRefGoogle Scholar
  66. Glass ADM (1989) Plant nutrition: an introduction to current concepts. Jones and Bartlett Publishers, Boston, MA, p 234Google Scholar
  67. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117CrossRefGoogle Scholar
  68. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15CrossRefGoogle Scholar
  69. Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA, Podar M, Doktycz MJ (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77(17):5934–5944PubMedPubMedCentralCrossRefGoogle Scholar
  70. Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538PubMedPubMedCentralCrossRefGoogle Scholar
  71. Govindarajan M, Balandreau J, Muthukumarasamy R, Revathi G, Lakshminarasimhan C (2006) Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant Soil 280:239–252CrossRefGoogle Scholar
  72. Guo B, Wang Y, Sun X, Tang K (2008) Bio-active natural products from endophytes: a review. Appl Biochem Microbiol 44(2):36–142Google Scholar
  73. Gyaneshwar P, Kumar GN, Parekh LJ (1998) Effect of buffering on the phosphate-solubilizing ability of microorganisms. World J Microbiol Biotechnol 14(5):669–673CrossRefGoogle Scholar
  74. Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. In: Food security in nutrient-stressed environments: exploiting plants genetic capabilities. Springer, Dordrecht, pp 133–143CrossRefGoogle Scholar
  75. Hallmann J (2001) Plant interactions with endophytic bacteria. CABI Publishing, New York, pp 87–119Google Scholar
  76. Hallmann J, Berg G (2006) Spectrum and population dynamics of bacterial root endophytes. In: Microbial root endophytes. Springer, Berlin/Heidelberg, pp 15–31CrossRefGoogle Scholar
  77. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  78. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471PubMedCrossRefPubMedCentralGoogle Scholar
  79. Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7:e30438. Scholar
  80. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657PubMedCrossRefPubMedCentralGoogle Scholar
  81. Hofte M, Dong Q, Kourambas S, Krishnapillai V, Sherratt D, Mergeay M (1994) The sss gene product, which affects pyoverdin production in Pseudomonas aeruginosa 7NSK2, is a site-specific recombinase. Mol Microbiol 14(5):1011–1020PubMedCrossRefPubMedCentralGoogle Scholar
  82. Hong Y, Pasternak JJ, Glick BR (1991) Biological consequences of plasmid transformation of the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Can J Microbiol 37:796–799CrossRefGoogle Scholar
  83. Hong CE, Kwon SY, Park JM (2016) Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana. Microbiol Res 185:13–21PubMedCrossRefPubMedCentralGoogle Scholar
  84. Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across South-Eastern Australia. Int J Syst Evol Microbiol 61(2):299–309PubMedCrossRefPubMedCentralGoogle Scholar
  85. Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176(7):1913–1923PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ibanez F, Angelini J, Taurian T, Tonelli ML, Fabra A (2009) Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Syst Appl Microbiol 32(1):49–55PubMedCrossRefPubMedCentralGoogle Scholar
  87. Inahashi Y, Iwatsuki M, Ishiyama A, Namatame M, Nishihara TA, Matsumoto A, Hirose T, Sunazuka T, Yamada H, Otoguro K (2011) Spoxazomicins A-C, novel antitrypanosomal alkaloids produced by an endophytic actinomycete, Streptosporangium oxazolinicum K07-0450T. J Antibiot 64:303–307PubMedCrossRefPubMedCentralGoogle Scholar
  88. Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant-Microbe Interact 17(10):1078–1085CrossRefGoogle Scholar
  89. Iniguez AL, Dong Y, Carter HD, Ahmer BM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant-Microbe Interact 18(2):169–178PubMedCrossRefPubMedCentralGoogle Scholar
  90. Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration location and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63(7):1262–1265CrossRefGoogle Scholar
  91. James EK, Gyaneshwar P, Barraquio WL, Mathan N, Ladha JK (2000) Endophytic diazotrophs associated with rice. In: The quest for nitrogen fixation in rice. International Rice Research Institute, Makati City, pp 119–140Google Scholar
  92. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae 67. Mol Plant-Microbe Interact 15:894–906PubMedCrossRefPubMedCentralGoogle Scholar
  93. Jha B, Thakur MC, Iti Gontia Albrecht V, Stoffels M, Schmid M, Hartmann A (2009) Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars. Eur J Soil Biol 45:62–72CrossRefGoogle Scholar
  94. Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution ethnography and ecology. PLoS One 6(6):1–22CrossRefGoogle Scholar
  95. Kan FL, Chen ZY, Wang ET, Tian CF, Sui XH, Chen WX (2007) Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai–Tibet plateau and in other zones of China. Arch Microbiol 188(2):103–115PubMedCrossRefPubMedCentralGoogle Scholar
  96. Kennedy IR, Pereg-gerk LL, Wood C, Deaker R, Gilchrist K, Katupitiya S (1997) Biological nitrogen fixation in non-leguminous field crops: facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194(1–2):65–79CrossRefGoogle Scholar
  97. Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung HY, Lee IJ (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695CrossRefGoogle Scholar
  98. Kim JD, Jeon BJ, Han JW, Park MY, Kang SA, Kim BS (2015) Evaluation of the endophytic nature of Bacillus amyloliquefaciens strain GYL4 and its efficacy in the control of anthracnose. Pest Mang Sci 72(8):1529–1536. Scholar
  99. Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. Microb Endophytes 19:199–233Google Scholar
  100. Koli DK, Chopra P, Pooniya V, Swarnalakshmi K (2015) Characterization and evaluation of plant growth promoting endophytes in chickpea. International Conference on Frontiers of Plant Sciences and Developing Technologies (ICFPSDT). Banaras Hindu University, Varanasi, p 45Google Scholar
  101. Krishnamurthy K, Gnanamanickam SS (1997) Biological control of sheath blight of rice: induction of systemic resistance in rice by plant-associated Pseudomonas spp. Curr Sci 72:331–334Google Scholar
  102. Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6(12):1244–1251PubMedCrossRefPubMedCentralGoogle Scholar
  103. Kumar V, Pathak DV, Dudeja SS, Saini R, Giri R, Narula S, Anand RC (2013) Legume nodule endophytes more diverse than endophytes from roots of legumes or non legumes in soils of Haryana India. J Microbiol Biotechnol Res 3(3):83–92Google Scholar
  104. Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  105. Kvist T, Ahring BK, Lasken RS, Westermann P (2007) Specific single-cell isolation and genomic amplification of uncultured microorganisms. Appl Microbiol Biotechnol 74:926–935PubMedCrossRefPubMedCentralGoogle Scholar
  106. Ladha JK, Reddy PM (1995) Extension of nitrogen fixation to rice – necessity and possibilities. GeoJournal 35(3):363–372CrossRefGoogle Scholar
  107. Ladha JK, Barraquio WL, Watanabe I (1983) Isolation and identification of nitrogen-fixing Enterobacter cloacae and Klebsiella planticola associated with rice plants. Can J Microbiol 29(10):1301–1308CrossRefGoogle Scholar
  108. Lazarovits G, Nowak J (1997) Rhizobacteria for improvement of plant growth and establishment. HortScience 32(2):188–192CrossRefGoogle Scholar
  109. Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186(16):5384–5391PubMedPubMedCentralCrossRefGoogle Scholar
  110. Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras J, Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissimum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Appl Environ Microbiol 61(3):1004–1012PubMedPubMedCentralGoogle Scholar
  111. Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40(1):238–246CrossRefGoogle Scholar
  112. Li J, Zhao GZ, Varma A, Qin S, Xiong Z, Huang HY, Zhu WY, Zhao LX, Xu LH, Zhang S, Li WJ (2012) An endophytic Pseudonocardia species induces the production of artemisinin in Artemisia annua. PLoS One 7(12):1–9Google Scholar
  113. Liu B, Qiao H, Huang L, Buchenauer H, Han Q, Kang Z, Gong Y (2009) Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol Control 49:277–285CrossRefGoogle Scholar
  114. Loaces I, Ferrando L, Scavino AF (2011) Dynamics diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61(3):606–618PubMedCrossRefPubMedCentralGoogle Scholar
  115. Lodewyckx C, Vangronsveld J, Porteous F, Moore ER, Taghavi S, Mezgeay M, der Lelie DV (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21(6):583–606CrossRefGoogle Scholar
  116. Long HH, Sonntag DG, Schmidt DD, Baldwin IT (2010) The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is organized by soil composition and host plant ethylene production and perception. New Phytol 185(2):554–567PubMedCrossRefGoogle Scholar
  117. Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73CrossRefGoogle Scholar
  118. Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224(2):268–278PubMedCrossRefPubMedCentralGoogle Scholar
  119. Maggini V, Leo MD, Mengoni A, Gallo ER, Miceli E, Reidel RVB, Biffi S, Pistelli L, Fani R, Firenzuoli F, Bogani P (2017) Plant-endophytes interaction influences the secondary metabolism in Echinacea purpurea (L.) Moench: an in vitro model. Sci Rep 7:16924. Scholar
  120. Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil rhizosphere and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microb Ecol 34(3):210–223PubMedCrossRefPubMedCentralGoogle Scholar
  121. Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194(1–2):37–44CrossRefGoogle Scholar
  122. Marcy Y, Ouverney C, Bik EM, Lösekann T, Ivanova N, Martin HG (2007) Dissecting biological ‘dark matter’ with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. PNAS 104:11889–11894PubMedCrossRefPubMedCentralGoogle Scholar
  123. Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MC, Velazquez-Sepulveda I, Santoyo G (2010) Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet Mol Res 9:2372–2380PubMedCrossRefPubMedCentralGoogle Scholar
  124. Martínez L, Caballero-Mellado J, Orozco J, Martinez-Romero E (2003) Diazotrophic bacteria associated with banana (Musa sp.). Plant Soil 257(1):35–47CrossRefGoogle Scholar
  125. Mavingui P, Laguerre G, Berge O, Heulin T (1992) Genetic and phenotypic diversity of Bacillus polymyxa in soil and in the wheat rhizosphere. Appl Environ Microbiol 58(6):1894–1903PubMedPubMedCentralGoogle Scholar
  126. McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342CrossRefGoogle Scholar
  127. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100PubMedPubMedCentralCrossRefGoogle Scholar
  128. Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb Ecol 40(1):43–56PubMedCrossRefPubMedCentralGoogle Scholar
  129. Miller KQC, Sze D-Y, Roufogalis B, Neilan B (2012) Culturable endophytes of medicinal plants and the genetic basis for their bioactivity. Microb Ecol 64:431–449PubMedCrossRefPubMedCentralGoogle Scholar
  130. Minorsky PV (2008) On the inside. Plant Physiol 146(4):1455–1456PubMedCentralCrossRefGoogle Scholar
  131. Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80(9):808–811CrossRefGoogle Scholar
  132. Misk A, Franco C (2011) Biocontrol of chickpea root rot using endophytic actinobacteria. Biol Control 56(5):811–822Google Scholar
  133. Mitter B, Petric A, Shin MW, Chain PSG, Hauberg-Lotte L, Reinhold-Hurek B, Nowak J, Sessitsch A (2013) Comparative genome analysis of Burkholderia phytofirmans psjn reveals a wide spectrum of endophytic ecology and functioning of microbial endophytes lifestyles based on interaction strategies with host plants. Front Plant Sci 4:–120.
  134. Muller S, Nebe-von-Caron G (2010) Functional single cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 34:554–587PubMedCrossRefPubMedCentralGoogle Scholar
  135. Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedouar A, Mori B, Calamassi R, Dazzo FB, Squartini A (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400PubMedCrossRefPubMedCentralGoogle Scholar
  136. Muthukumar A, Eswaran A, Sangeetha G (2011) Induction of systemic resistance by mixtures of fungal and endophytic bacterial isolates against Pythium aphanidermatum. Acta. Physiol Plant 33:1933–1944Google Scholar
  137. Nasopoulou C, Pohjanen J, Koskimaki JJ, Zabetakis I, Pirttila AM (2014) Localization of strawberry (Fragaria ananassa) and Methylobacterium extorquens genes of strawberry flavor biosynthesis in strawberry tissue by in situ hybridization. J Plant Physiol 171:1099–1105PubMedCrossRefPubMedCentralGoogle Scholar
  138. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170(1):265–270PubMedCrossRefPubMedCentralGoogle Scholar
  139. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436–439PubMedCrossRefPubMedCentralGoogle Scholar
  140. Naveed M, Mitter B, Reichenauer TG, Wieczorekc K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39CrossRefGoogle Scholar
  141. Neilands JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 1(1):27–46PubMedCrossRefPubMedCentralGoogle Scholar
  142. Pandya M, Rajput M, Rajkumar S (2015) Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata. Microbiology 84(1):80–89CrossRefGoogle Scholar
  143. Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86(1):36–44CrossRefGoogle Scholar
  144. Passari AK, Mishra VK, Singh G, Singh P, Kumar B, Gupta VK, Sarma RK, Saikia R, Donovan AO, Singh BP (2017) Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Rep 7:1–17CrossRefGoogle Scholar
  145. Patriquin DG, Doebereiner J, Jain DK (1983) Sites and processes of association between diazotrophs and grasses. Can J Microbiol 29:900–915CrossRefGoogle Scholar
  146. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42(3):207–220PubMedPubMedCentralCrossRefGoogle Scholar
  147. Pillay VK, Nowak J (1997) Inoculum density temperature and genotype effects on in-vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a Pseudomonad bacterium. Can J Microbiol 43(4):354–361CrossRefGoogle Scholar
  148. Pleban S, Chernin L, Chet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25:284–288PubMedCrossRefPubMedCentralGoogle Scholar
  149. Priti V, Ramesha BT, Singh S, Ravikanth G, Ganeshaia KN, Suryanarayanan TS, Shaanker RU (2013) How endophytic fungi as alternative sources of plant secondary metabolites? Curr Sci 97(4):477–478Google Scholar
  150. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062PubMedCrossRefPubMedCentralGoogle Scholar
  151. Rajendran G, Sing F, Desai AJ, Archana G (2008) Enhanced growth and nodulation of pigeonpea by co-inoculation of Bacillus strains with Rhizobium sp. Bioresour Technol 99(11):4544–4550PubMedCrossRefPubMedCentralGoogle Scholar
  152. Rajendran G, Patel MH, Joshi SJ (2012) Isolation and characterization of nodule-associated Exiguobacterium sp. from the root nodules of fenugreek (Trigonella foenum-graecum) and their possible role in plant growth promotion. Int J Microbiol 12:1–8CrossRefGoogle Scholar
  153. Rasche F, Velvis H, Zachow C, Berg G, Van Elsas JD, Sessitsch A (2006) Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol 43(3):555–566CrossRefGoogle Scholar
  154. Rascovan N, Carbonetto B, Perrig D, Díaz M, Canciani W, Abalo M, Alloati J, Gonzalez-Anta G, Vazquez MP (2016) Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Sci Rep 6(28084):1–12Google Scholar
  155. Rediers H, Rainey PB, Vanderleyden J, De Mot R (2005) Unraveling the secret lives of bacteria: use of in-vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev 69(2):217–261PubMedPubMedCentralCrossRefGoogle Scholar
  156. Reinhold-Hurek B, Hurek T (1998a) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification localization and perspectives to study their function. Crit Rev Plant Sci 17:29–54CrossRefGoogle Scholar
  157. Reinhold-Hurek B, Hurek T (1998b) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144PubMedPubMedCentralCrossRefGoogle Scholar
  158. Reiter B, Burgmann H, Burg K, Sessitsch A (2003) Endophytic nifH gene diversity in African sweet potato. Can J Microbiol 49(9):549–555PubMedCrossRefPubMedCentralGoogle Scholar
  159. Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Funct Plant Biol 28(9):829–836CrossRefGoogle Scholar
  160. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17(4):319–339PubMedCrossRefPubMedCentralGoogle Scholar
  161. Rodriguez D, Andrade FH, Goudriaan J (2000) Does assimilate supply limit leaf expansion in wheat grown in the field under low phosphorus availability. Field Crop Res 67(3):227–238CrossRefGoogle Scholar
  162. Rosconi F, Davyt D, Martinez V, Martinez M, Abin-Carriquiry JA, Zane H, Butler A, de Souza EM, Fabiano E (2013) Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environ Microbiol 15:916–927PubMedCrossRefPubMedCentralGoogle Scholar
  163. Rosenblueth M, Martinez-romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837PubMedPubMedCentralCrossRefGoogle Scholar
  164. Rothballer M, Schmid M, Fekete A, Hartmann A (2005) Comparative in-situ analysis of ipdC–gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245. Environ Microbiol 7(11):1839–1846PubMedCrossRefPubMedCentralGoogle Scholar
  165. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932PubMedPubMedCentralCrossRefGoogle Scholar
  166. Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation characterization and evaluation of bacterial root and nodule endophytes from chickpea cultivated in northern India. J Basic Microbiol 55(1):74–81PubMedCrossRefPubMedCentralGoogle Scholar
  167. Salisbury FB, Ross CW (1992) Plant physiology. Wadsworth Publishing Company, BelmontGoogle Scholar
  168. Schippers B, Bakker AW, Bakker PAHM, Van Peer R (1991) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. In: The rhizosphere and plant growth. Springer, Dordrecht, pp 211–219CrossRefGoogle Scholar
  169. Schloss PD, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6:229PubMedPubMedCentralCrossRefGoogle Scholar
  170. Senthilkumar M, Swarnalakshmi K, Govindasamy V, Lee YK, Annapurna K (2009) Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus Rhizoctonia bataticola. Curr Microbiol 58(4):288–293PubMedCrossRefPubMedCentralGoogle Scholar
  171. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50(4):239–249PubMedPubMedCentralCrossRefGoogle Scholar
  172. Sevilla M, Kennedy C, Triplett EW (2000) Genetic analysis of nitrogen fixation and plant-growth stimulating properties of Acetobacter diazotrophicus an endophyte of sugarcane. In: Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Wymondham, pp 737–760Google Scholar
  173. Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170PubMedCrossRefPubMedCentralGoogle Scholar
  174. Shrestha RK, Ladha JK (1996) Genotypic variation in promotion of rice dinitrogen fixation as determined by nitrogen-15 dilution. Soil Sci Soc Am J 60(6):1815–1821CrossRefGoogle Scholar
  175. Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22(6):641–650CrossRefGoogle Scholar
  176. Sobral JK, Araujo WL, Mendes R, Geraldi IO, Kleiner AAP, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6(12):1244–1251CrossRefGoogle Scholar
  177. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):1–13CrossRefGoogle Scholar
  178. Sprent JI, James EK (1995) N2-fixation by endophytic bacteria: questions of entry and operation. In: Azospirillum VI and related microorganisms. Springer, Berlin/Heidelberg, pp 15–30CrossRefGoogle Scholar
  179. Stajkovic O, De Meyer S, Milicic B, Willems A, Delic D (2009) Isolation and characterization of endophytic non-rhizobial bacteria from root nodules of alfalfa (Medicago sativa L.). Botanica Serbica 33(1):107–114Google Scholar
  180. Stoltzfus JR, So R, Malarvithi PP, Ladha JK, de Bruijn FJ (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36CrossRefGoogle Scholar
  181. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67(2):257–268PubMedCrossRefPubMedCentralGoogle Scholar
  182. Sturz AV (1995) The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175:257–263CrossRefGoogle Scholar
  183. Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules roots stems and foliage and their influence on host growth. Biol Fertil Soils 25(1):13–19CrossRefGoogle Scholar
  184. Surette MA, Sturz AV, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucuscarota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253(2):381–390CrossRefGoogle Scholar
  185. Swarnalakshmi K, Senthilkumar M, Ramakrishnan B (2016) Endophytic actinobacteria: nitrogen fixation, phytohormone production and antibiosis. In: Plant growth promoting actinobacteria. Springer Science and Business Media, Singapore. Scholar
  186. Tadych M, White JF, Moselio S (2009) Endophytic microbes. In: Encyclopedia of microbiology. Academic Press, Oxford, pp 431–442CrossRefGoogle Scholar
  187. Taechowisan T, Lu C, Shen Y, Lumyong S (2005) Secondary metabolites from endophytic Streptomyces aureofaciens CMUA130 and their antifungal activity. Microbiology 151:1691–1695PubMedCrossRefPubMedCentralGoogle Scholar
  188. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459PubMedCrossRefPubMedCentralGoogle Scholar
  189. Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5(10):1009–1015PubMedCrossRefPubMedCentralGoogle Scholar
  190. Tanaka K, Shimizu T, Zakria M, Njoloma J, Saeki Y, Sakai M, Yamakawa T, Minamisawa K, Akao S (2006) Incorporation of DNA sequence encoding green fluorescent protein (GFP) intoendophytic diazotroph from sugarcane and sweet potato and the colonizing ability of these bacteria in Brassica oleracea. Microbes Environ 21:122–128CrossRefGoogle Scholar
  191. Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur J Soil Sci 57(1):67–71CrossRefGoogle Scholar
  192. Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68(5):2161–2171PubMedPubMedCentralCrossRefGoogle Scholar
  193. Triplett EW (1996) Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant Soil 186(1):29–38CrossRefGoogle Scholar
  194. Turner JT, Lampel JS, Stearman RS, Sundin GW, Gunyuzlu P, Anderson JJ (1991) Stability of the δ-endotoxin gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microbiol 57:3522–3528PubMedPubMedCentralGoogle Scholar
  195. Urquiaga S, Cruz KH, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen-balance estimates. Soil Sci Soc Am J 56(1):105–114CrossRefGoogle Scholar
  196. Van Overbeek L, Van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64(2):283–296PubMedCrossRefPubMedCentralGoogle Scholar
  197. Vassilev N, Vassileva M (2003) Biotechnological solubilization of rock phosphate on media containing agroindustrial wastes. Appl Environ Microbiol 61:435–440Google Scholar
  198. Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30(5–6):460–468CrossRefGoogle Scholar
  199. Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91(2):127–141PubMedCrossRefPubMedCentralGoogle Scholar
  200. Verma SC, Singh A, Chowdhury SP, Tripathi AK (2004) Endophytic colonization ability of two deep-water rice endophytes Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Lett 26:425–429PubMedCrossRefPubMedCentralGoogle Scholar
  201. Von Wiren N, Khodr H, Hider RC (2000) Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron (III). Plant Physiol 124(3):1149–1158CrossRefGoogle Scholar
  202. Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium sp. closely associated with wheat roots. Biol Fertil Soils 40(1):36–43CrossRefGoogle Scholar
  203. Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa T (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of rice. BMC Microbiol 17:209PubMedPubMedCentralCrossRefGoogle Scholar
  204. Wang X, Liang G (2014) Control efficacy of endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial wilt Ralstonia solanacearum. Biomed Res Int 465435:1–11Google Scholar
  205. Wartiainen I, Eriksson T, Zheng W, Rasmussen U (2008) Variation in the active diazotrophic community in rice paddy- nifH PCR-DGGE analysis of rhizosphere and bulk soil. Appl Soil Ecol 39:65–75. Scholar
  206. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511PubMedPubMedCentralCrossRefGoogle Scholar
  207. Wilson D (1995) Endophyte: the evolution of a term and clarification of its use and definition. Oikos 73:274–276CrossRefGoogle Scholar
  208. Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Schmidt TM (1997) Natural endophytic association between Rhizobium leguminosarum bv. Trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194(1–2):99–114CrossRefGoogle Scholar
  209. Yuan Y, Lee HT, Hu H, Scheben A, Edwards D (2018) Single-cell genomic analysis in plants. Genes 9:50. Scholar
  210. Zabetakis I (1997) Enhancement of flavour biosynthesis from strawberry (Fragaria x ananassa) callus cultures by Methylobacterium species. Plant Cell Tissue Org Cult 50:179–183CrossRefGoogle Scholar
  211. Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, De Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol 51(3):375–393PubMedCrossRefPubMedCentralGoogle Scholar
  212. Zamora GML, Romero ME (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91(2):117–126Google Scholar
  213. Zhao L, Xu Y, Sun R, Deng Z, Yang W, Wei G (2011) Identification and characterization of the endophytic plant growth prompter Bacillus cereus strain MQ23 isolated from Sophora Alopecuroides root nodules. Braz J Microbiol 42:567–575PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Karivaradharajan Swarnalakshmi
    • 1
    Email author
  • Sushmita Rajkhowa
    • 1
  • Murugesan Senthilkumar
    • 2
  • Dolly Wattal Dhar
    • 1
  1. 1.Division of MicrobiologyICAR-Indian Agricultural Research Institute, PUSANew DelhiIndia
  2. 2.Division of Basic SciencesICAR-Indian Institute of Pulses ResearchKanpurIndia

Personalised recommendations