Flow Fields and Heat Transfer Associated with an Acoustically Levitated Droplet

  • Koji HasegawaEmail author


Considering the potential applications, a better understanding of the flow fields in an acoustically levitated droplet is of great significance in scientific fields. The flow generated by a nonlinear acoustic field is known as acoustic streaming. Using acoustic levitation, multi-scale acoustic streaming can be induced both inside and outside the droplet. In the internal flow field, the streaming configuration is affected by the physical properties of the droplet, i.e., the droplet diameter and rotation. The external flow field can be characterized by the applied sound pressure, physical properties of the droplet, and surrounding gas. These flow fields play an important role in the heat and mass transfer of the levitated droplet. This chapter provides a comprehensive review of the flow fields, the general theory of acoustic streaming, and an understanding of the heat transfer/mixing enhancement.


  1. 1.
    J. Lighthill, Acoustic streaming. J. Sound Vib. 61(3), 391–418 (1978)CrossRefGoogle Scholar
  2. 2.
    R. Green, M. Ohlin, M. Wiklund, T. Laurell, A. Lenshof, Applications of Acoustic Streaming (Royal Society of Chemistry, London, 2014), pp. 312–336Google Scholar
  3. 3.
    S.K. Chung, E.H. Trinh, Containerless protein crystal growth in rotating levitated drops. J. Cryst. Growth 194(3–4), 384–397 (1998)CrossRefGoogle Scholar
  4. 4.
    E.H. Trinh, J.L. Robey, Experimental study of streaming flows associated with ultrasonic levitators. Phys. Fluids 6(11), 3567–3579 (1994)CrossRefGoogle Scholar
  5. 5.
    A. Rednikov, N. Riley, A simulation of streaming flows associated with acoustic levitators. Phys. Fluids 14(4), 1502–1510 (2002)CrossRefGoogle Scholar
  6. 6.
    A.Y. Rednikov, H. Zhao, S.S. Sadhal, E.H. Trinh, Steady streaming around a spherical drop displaced from the velocity antinode in an acoustic levitation field. Q. J. Mech. Appl. Math. 59(3), 377–397 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    A.Y. Rednikov, S.S. Sadhal, Steady streaming from an oblate spheroid due to vibrations along its axis. J. Fluid Mech. 499, 345–380 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    H. Zhao, S.S. Sadhal, E.H. Trinh, Singular perturbation analysis of an acoustically levitated sphere: flow about the velocity node. J. Acoust. Soc. Am. 106(2), 589–595 (1999)CrossRefGoogle Scholar
  9. 9.
    H. Zhao, S.S. Sadhal, E.H. Trinh, Internal circulation in a drop in an acoustic field. J. Acoust. Soc. Am. 106(6), 3289–3295 (1999)CrossRefGoogle Scholar
  10. 10.
    A.L. Yarin, G. Brenn, O. Kastner, D. Rensink, C. Tropea, Evaporation of acoustically levitated droplets. J. Fluid Mech. 399, 151–204 (1999)CrossRefGoogle Scholar
  11. 11.
    A.L. Yarin, G. Brenn, D. Rensink, Evaporation of acoustically levitated droplets of binary liquid mixtures. Int. J. Heat Fluid Flow 23(4), 471–486 (2002)CrossRefGoogle Scholar
  12. 12.
    K. Hasegawa, Y. Abe, A. Fujiwara, Y. Yamamoto, K. Aoki, External flow of an acoustically levitated droplet. Microgravity Sci. Technol. 20(3–4), 261 (2008)CrossRefGoogle Scholar
  13. 13.
    Y. Yamamoto, Y. Abe, A. Fujiwara, K. Hasegawa, K. Aoki, Internal flow of acoustically levitated droplet. Microgravity Sci. Technol. 20(3–4), 277 (2008)CrossRefGoogle Scholar
  14. 14.
    K. Hasegawa, Y. Abe, A. Kaneko, Y. Yamamoto, K. Aoki, Visualization measurement of streaming flows associated with a single-acoustic levitator. Microgravity Sci. Technol. 21(1), 9 (2009)CrossRefGoogle Scholar
  15. 15.
    K. Hasegawa, Y. Abe, A. Goda, Microlayered flow structure around an acoustically levitated droplet under a phase-change process. npj Microgravity 2, 16004 (2016)Google Scholar
  16. 16.
    S. Santesson, S. Nilsson, Airborne chemistry: acoustic levitation in chemical analysis. Anal. Bioanal. Chem. 378(7), 1704–1709 (2004)CrossRefGoogle Scholar
  17. 17.
    V. Vandaele, P. Lambert, A. Delchambre, Non-contact handling in microassembly: acoustical levitation. Precis. Eng. 29(4), 491–505 (2005)CrossRefGoogle Scholar
  18. 18.
    F. Priego-Capote, L. de Castro, Ultrasound-assisted levitation: lab-on-a-drop. TrAC Trends Anal. Chem. 25(9), 856–867 (2006)CrossRefGoogle Scholar
  19. 19.
    L. Puskar, R. Tuckermann, T. Frosch, J. Popp, V. Ly, D. McNaughton, B.R. Wood, Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites. Lab Chip 7(9), 1125–1131 (2007)CrossRefGoogle Scholar
  20. 20.
    A. Scheeline, R.L. Behrens, Potential of levitated drops to serve as microreactors for biophysical measurements. Biophys. Chem. 165, 1–2 (2012)CrossRefGoogle Scholar
  21. 21.
    D. Foresti, M. Nabavi, M. Klingauf, A. Ferrari, D. Poulikakos, Acoustophoretic contactless transport and handling of matter in air. Proc. Nat. Acad. Sci. 110(31), 12549–12554 (2013)CrossRefGoogle Scholar
  22. 22.
    E.T. Chainani, W.H. Choi, K.T. Ngo, A. Scheeline, Mixing in colliding, ultrasonically levitated drops. Anal. Chem. 86(4), 2229–2237 (2014)CrossRefGoogle Scholar
  23. 23.
    C. Bouyer, P. Chen, S. Güven, T.T. Demirtaş, T.J. Nieland, F. Padilla, U. Demirci, A bio-acoustic levitational (BAL) assembly method for engineering of multilayered, 3D brain-like constructs, using human embryonic stem cell derived neuro-progenitors. Adv. Mater. 1, 161–167 (2016)CrossRefGoogle Scholar
  24. 24.
    T. Vasileiou, D. Foresti, A. Bayram, D. Poulikakos, A. Ferrari, Toward contactless biology: Acoustophoretic DNA transfection. Sci. Rep. 6, 20023 (2016)CrossRefGoogle Scholar
  25. 25.
    A. Marzo, B.W. Drinkwater, Holographic acoustic tweezers. Proc. Nat. Acad. Sci. 116(1), 84–89 (2019)CrossRefGoogle Scholar
  26. 26.
    L. Rayleigh, On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problems. Philos. Trans. R. Soc. Lond. 175, 1–21 (1884)zbMATHGoogle Scholar
  27. 27.
    S.S. Sadhal, Acoustofluidics 13: analysis of acoustic streaming by perturbation methods. Lab Chip 12(13), 2292–2300 (2012)CrossRefGoogle Scholar
  28. 28.
    Tatsuno M (1982) Secondary streaming induced by an oscillating cylinder, in An Album of Fluid Motion, vol. 31Google Scholar
  29. 29.
    H. Schlichting, Berechnung ebener periodischer Grenzschichtstromungen. Phys. z. 33, 327–335 (1932)zbMATHGoogle Scholar
  30. 30.
    S.S. Sadhal, Acoustofluidics 15: streaming with sound waves interacting with solid particles. Lab Chip 12(15), 2600–2611 (2012)CrossRefGoogle Scholar
  31. 31.
    S.S. Sadhal, Acoustofluidics 16: acoustics streaming near liquid–gas interfaces: drops and bubbles. Lab Chip 12(16), 2771–2781 (2012)CrossRefGoogle Scholar
  32. 32.
    K. Hasegawa, Y. Abe, A. Kaneko, K. Aoki, PIV measurement of internal and external flow of an acoustically levitated droplet. Int. J. Transp. Phenom. 12(3–4), 151–160 (2011)Google Scholar
  33. 33.
    K. Shitanishi, K. Hasegawa, A. Kaneko, Y. Abe, Study on heat transfer and flow characteristic under phase-change process of an acoustically levitated droplet. Microgravity Sci. Technol. 26(5), 305–312 (2014)CrossRefGoogle Scholar
  34. 34.
    A. Gopinath, A.F. Mills, Convective heat transfer from a sphere due to acoustic streaming. J. Heat Transf. 115, 332–341 (1993)CrossRefGoogle Scholar
  35. 35.
    Y. Niimura, K. Hasegawa, Evaporation of droplet in mid-air: pure and binary droplets in single-axis acoustic levitator. PLoS ONE 14(2), e0212074 (2019)CrossRefGoogle Scholar
  36. 36.
    W.E. Ranz, W.R. Marshall, Evaporation from drops. Chem. Eng. Prog. 48(3), 141–146 (1952)Google Scholar
  37. 37.
    S. Whitaker, Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE J. 18(2), 361–371 (1972)CrossRefGoogle Scholar
  38. 38.
    A. Watanabe, K. Hasegawa, Y. Abe, Contactless fluid manipulation in air: droplet coalescence and active mixing by acoustic levitation. Sci. Rep. 8(1), 10221 (2018)CrossRefGoogle Scholar
  39. 39.
    C.L. Shen, W.J. Xie, B. Wei, Parametrically excited sectorial oscillation of liquid drops floating in ultrasound. Phys. Rev. E 81(4), 046305 (2010)CrossRefGoogle Scholar
  40. 40.
    B. Carroll, C. Hidrovo, Droplet collision mixing diagnostics using single fluorophore LIF. Exp. Fluids 53(5), 1301–1316 (2012)CrossRefGoogle Scholar
  41. 41.
    C.L. Shen, W.J. Xie, Z.L. Yan, B. Wei, Internal flow of acoustically levitated drops undergoing sectorial oscillations. Phys. Lett. A 374(39), 4045–4048 (2010)CrossRefGoogle Scholar
  42. 42.
    C.T. Culbertson, S.C. Jacobson, J.M. Ramsey, Diffusion coefficient measurements in microfluidic devices. Talanta 56(2), 365–373 (2002)CrossRefGoogle Scholar
  43. 43.
    J.M. Ottino, The kinematics of mixing: stretching, chaos, and transport (Cambridge University Press, 1989)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKogakuin UniversityTokyoJapan

Personalised recommendations