Advertisement

Design of Single-Axis Acoustic Levitators

  • Marco A. B. AndradeEmail author
Chapter
  • 74 Downloads

Abstract

In this chapter, a numerical procedure based on the finite element method (FEM) is presented for simulating and designing single-axis acoustic levitators. We first present an overview of the equations governing the propagation of mechanical waves in solids, piezoelectric materials and the air medium. We then show how axisymmetric models based on FEM can be utilized for simulating piezoelectric transducers and the acoustic cavity of the levitator. To illustrate the design procedure, the finite element method is applied to simulate and design a 25-kHz bolt-clamped Langevin-type transducer. The FEM is also used to design a resonant single-axis acoustic levitator and to investigate the behavior of a non-resonant acoustic levitator.

References

  1. 1.
    M.A.B. Andrade, N. Pérez, J.C. Adamowski, Review of progress in acoustic levitation. Braz. J. Phys. 48(2), 190–213 (2018)CrossRefGoogle Scholar
  2. 2.
    L. Meng, F. Cai, F. Li, W. Zhou, L. Niu, H. Zheng, Acoustic tweezers. J. Phys. D Appl. Phys. 52(27), 273001 (2019)CrossRefGoogle Scholar
  3. 3.
    E.H. Brandt, Acoustic physics. Suspended by sound. Nature 413(6855), 474–475 (2001)CrossRefGoogle Scholar
  4. 4.
    W.J. Xie, B. Wei, Parametric study of single-axis acoustic levitation. Appl. Phys. Lett. 79(6), 881–883 (2001)CrossRefGoogle Scholar
  5. 5.
    R.R. Whymark, Acoustic field positioning for containerless processing. Ultrasonics 13(6), 251–261 (1975)CrossRefGoogle Scholar
  6. 6.
    Y. Hashimoto, Y. Koike, S. Ueha, Acoustic levitation of planar objects using a longitudinal vibration mode. J. Acoust. Soc. Japan 16(3), 189–192 (1995)CrossRefGoogle Scholar
  7. 7.
    Y. Hashimoto, Y. Koike, S. Ueha, Near-field acoustic levitation of planar specimens using flexural vibration. J. Acoust. Soc. Am. 100(4), 2057–2061 (1996)CrossRefGoogle Scholar
  8. 8.
    S. Ueha, Y. Hashimoto, Y. Koike, Non-contact transportation using near-field acoustic levitation. Ultrasonics 38(1), 26–32 (2000)CrossRefGoogle Scholar
  9. 9.
    A. Marzo, B.W. Drinkwater, Holographic acoustic tweezers. Proc. Natl. Acad. Sci. 116(1), 84–89 (2019)CrossRefGoogle Scholar
  10. 10.
    A. Marzo, A. Ghobrial, L. Cox, M. Caleap, A. Croxford, B.W. Drinkwater, Realization of compact tractor beams using acoustic delay-lines. Appl. Phys. Lett. 110(1), 014102 (2017)CrossRefGoogle Scholar
  11. 11.
    E.H. Trinh, Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity. Rev. Sci. Instrum. 56(11), 2059–2065 (1985)CrossRefGoogle Scholar
  12. 12.
    M.A.B. Andrade, F.C. Buiochi, J. Adamowski, Finite element analysis and optimization of a single-axis acoustic levitator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(2), 469–479 (2010)CrossRefGoogle Scholar
  13. 13.
    J.K.R. Weber, C.A. Rey, J. Neuefeind, C.J. Benmore, Acoustic levitator for structure measurements on low temperature liquid droplets. Rev. Sci. Instrum. 80(8), 083904 (2009)CrossRefGoogle Scholar
  14. 14.
    A. Marzo, A. Barnes, B.W. Drinkwater, TinyLev: a multi-emitter single-axis acoustic levitator. Rev. Sci. Instrum. 88(8), 085105 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Marzo, T. Corkett, B.W. Drinkwater, Ultraino: an open phased-array system for narrowband airborne ultrasound transmission. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(1), 102–111 (2018)CrossRefGoogle Scholar
  16. 16.
    C.A. Rey, D.R. Merkley, G.R. Hammarlund, T.J. Danley, Acoustic levitation technique for contairnerless processing at high temperatures in space. Metall. Trans. A 19(11), 2619–2623 (1988)CrossRefGoogle Scholar
  17. 17.
    M.A.B. Andrade, N. Pérez, J.C. Adamowski, Particle manipulation by a non-resonant acoustic levitator. Appl. Phys. Lett. 106(1), 014101 (2015)CrossRefGoogle Scholar
  18. 18.
    W.J. Xie, C.D. Cao, Y.J. Lü, B. Wei, Levitation of iridium and liquid mercury by ultrasound. Phys. Rev. Lett. 89(10), 104304 (2002)CrossRefGoogle Scholar
  19. 19.
    J.A. Gallego-Juarez, Piezoelectric ceramics and ultrasonic transducers. J. Phys. E: Sci. Instrum. 22(10), 804–816 (1989)CrossRefGoogle Scholar
  20. 20.
    A. Abdullah, M. Shahini, A. Pak, An approach to design a high power piezoelectric ultrasonic transducer. J. Electroceramics 22(4), 369–382 (2009)CrossRefGoogle Scholar
  21. 21.
    W.J. Xie, B. Wei, Dependence of acoustic levitation capabilities on geometric parameters. Phys. Rev. E—Stat. Nonlinear, Soft Matter Phys. 66(2), 026605 (2002)CrossRefGoogle Scholar
  22. 22.
    T.J. Chung, Applied Continuum Mechanics (Cambridge University Press, New York, 1996)zbMATHGoogle Scholar
  23. 23.
    A.B. Auld, Acoustics Fields and Waves in Solids, vol. 1 (Wiley, New York, 1973)Google Scholar
  24. 24.
    D. Royer, E. Dieulesaint, Elastic Waves in Solids I: Free and Guided Propagation (Springer, Berlin, 2000)zbMATHCrossRefGoogle Scholar
  25. 25.
    L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics (Wiley, New York, 1999)Google Scholar
  26. 26.
    IEEE Standard on piezoelectricity, ANSI/IEEE Std. 176-1987 (The Institute of Electrical and and Electronics Engineers, New York, 1987)Google Scholar
  27. 27.
    Z.Y. Hong, W. Zhai, N. Yan, B. Wei, Measurement and simulation of acoustic radiation force on a planar reflector. J. Acoust. Soc. Am. 135(5), 2553–2558 (2014)CrossRefGoogle Scholar
  28. 28.
    L.P. Gor’kov, On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov. Phys. Dokl. 6, 773–775 (1962)Google Scholar
  29. 29.
    M. Barmatz, P. Collas, Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields. Acoust. Soc. Am. 77(March), 928–945 (1985)zbMATHCrossRefGoogle Scholar
  30. 30.
    P. Collas, M. Barmatz, C. Shipley, Acoustic levitation in the presence of gravity. J. Acoust. Soc. Am. 86(2), 777–787 (1989)CrossRefGoogle Scholar
  31. 31.
    M.A.B. Andrade, T.S. Ramos, F.T.A. Okina, J.C. Adamowski, Nonlinear characterization of a single-axis acoustic levitator. Rev. Sci. Instrum. 85(4), 045125 (2014)CrossRefGoogle Scholar
  32. 32.
    R. Tuckermann, L. Puskar, M. Zavabeti, R. Sekine, D. McNaughton, Chemical analysis of acoustically levitated drops by Raman spectroscopy. Anal. Bioanal. Chem. 394(5), 1433–1441 (2009)CrossRefGoogle Scholar
  33. 33.
    S. Santesson, S. Nilsson, Airborne chemistry: acoustic levitation in chemical analysis. Anal. Bioanal. Chem. 378(7), 1704–1709 (2004)CrossRefGoogle Scholar
  34. 34.
    T. Vasileiou, D. Foresti, A. Bayram, D. Poulikakos, A. Ferrari, Toward contactless biology: acoustophoretic DNA transfection. Sci. Rep. 6, 20023 (2016)Google Scholar
  35. 35.
    A. Scheeline, R.L. Behrens, Potential of levitated drops to serve as microreactors for biophysical measurements. Biophys. Chem. 165–166, 1–12 (2012)CrossRefGoogle Scholar
  36. 36.
    D. Zang, Y. Yu, Z. Chen, X. Li, H. Wu, X. Geng, Acoustic levitation of liquid drops: dynamics, manipulation and phase transitions. Adv. Colloid Interface Sci. 243, 77–85 (2017)CrossRefGoogle Scholar
  37. 37.
    W. Di et al., Shape evolution and bubble formation of acoustically levitated drops. Phys. Rev. Fluids 3(10), 103606 (2018)CrossRefGoogle Scholar
  38. 38.
    M.A.B. Andrade, N. Pérez, J.C. Adamowski, Experimental study of the oscillation of spheres in an acoustic levitator. J. Acoust. Soc. Am. 136(4), 1518–1529 (2014)CrossRefGoogle Scholar
  39. 39.
    K. Hasegawa, K. Kono, Oscillation characteristics of levitated sample in resonant acoustic field. AIP Adv. 9(3), 035313 (2019)CrossRefGoogle Scholar
  40. 40.
    T. Fushimi, T.L. Hill, A. Marzo, B.W. Drinkwater, Nonlinear trapping stiffness of mid-air single-axis acoustic levitators. Appl. Phys. Lett. 113(3), 034102 (2018)CrossRefGoogle Scholar
  41. 41.
    C.R. Field, A. Scheeline, Design and implementation of an efficient acoustically levitated drop reactor for in stillo measurements. Rev. Sci. Instrum. 78(12), 125102 (2007)CrossRefGoogle Scholar
  42. 42.
    E.G. Lierke, Deformation and displacement of liquid drops in an optimized acoustic standing wave levitator. Acta Acust. United Acust. 88, 206–217 (2002)Google Scholar
  43. 43.
    A. Lenshof, M. Evander, T. Laurell, J. Nilsson, Acoustofluidics 5: building microfluidic acoustic resonators. Lab Chip 12(4), 684–695 (2012)CrossRefGoogle Scholar
  44. 44.
    B.W. Drinkwater, Dynamic-field devices for the ultrasonic manipulation of microparticles. Lab Chip 16(13), 2360–2375 (2016)CrossRefGoogle Scholar
  45. 45.
    X. Ding et al., Surface acoustic wave microfluidics. Lab Chip 13(18), 3626 (2013)CrossRefGoogle Scholar
  46. 46.
    M.A.B. Andrade, A.L. Bernassau, J.C. Adamowski, Acoustic levitation of a large solid sphere. Appl. Phys. Lett. 109(4), 044101 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Institute of Physics, University of São PauloSão PauloBrazil

Personalised recommendations