Advertisement

Functionalized Graphene/Polymer Nanofiber Composites and Their Functional Applications

  • Hanan Abdali
  • Abdellah AjjiEmail author
Chapter
Part of the Carbon Nanostructures book series (CARBON)

Abstract

Nanofiber composites materials produced by electrospinning may have a very high specific surface area owing to their small diameters, and nanofiber mats can be highly porous with excellent pore interconnection. However, applications using nanofiber composites also require specific properties such as good electrical conductivity, are flame retardant, anti-static and anti-radiative as well. Over the past few decades, the carbon nanomaterial, graphene has been researched widely owing to its intrinsic properties such as large surface area, excellent thermal, electrical, and optical properties in addition to superior chemical and mechanical characteristics needed in specific applications. The chemical functionalization of graphene nanosheet improved its dispersibility in common organic solvents, which is important when developing novel graphene-based nanocomposites. Moreover, graphene may also be functionalized in order to modify its intrinsic characteristics, for example, its electronic properties can be modified to control the conductivity and band gap in nano-electronic devices. Functionalized graphene-based polymer nanofiber composites exhibit a variety of improved, or even new properties such as adsorption performance, anti-bacterial, hydrophobicity and conductivity valued across a wide range of applications in sensors, biosensors, transparent conductive films, high-frequency circuits, toxic material removal, capacitors, spintronic devices, fuel cells, touch screens, flexible electronics and batteries. This book chapter summarizes the recent progress in functionalized graphene-based polymer nanofibers composites, with an emphasis on their applications.

Keywords

Functionalized graphene Nanofibers Nanocomposite Electrospinning Electrospun polymers Applications 

Notes

Acknowledgements

The authors would like to thank the NSERC (Natural Science and Engineering Research Council of Canada), and ProAmpac, for their support. We are also sincerely grateful to the Saudi Ministry of Education for their financial support to Hanan Abdali.

References

  1. 1.
    Hassan, M.A., et al.: Fabrication of nanofiber meltblown membranes and their filtration properties. J. Membr. Sci. 427, 336–344 (2013)CrossRefGoogle Scholar
  2. 2.
    Ma, P.X., Zhang, R.: Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. 46(1), 60–72 (1999)CrossRefGoogle Scholar
  3. 3.
    Martin, C.R.: Membrane-based synthesis of nanomaterials. Chem. Mater. 8(8), 1739–1746 (1996)CrossRefGoogle Scholar
  4. 4.
    Nakata, K., et al.: Poly (ethylene terephthalate) nanofibers made by Sea–Island-type conjugated melt spinning and laser-heated flow drawing. Macromol. Rapid Commun. 28(6), 792–795 (2007)CrossRefGoogle Scholar
  5. 5.
    Drosou, C., Krokida, M., Biliaderis, C.G.: Composite pullulan-whey protein nanofibers made by electrospinning: impact of process parameters on fiber morphology and physical properties. Food Hydrocoll. 77, 726–735 (2018)CrossRefGoogle Scholar
  6. 6.
    Kamble, P., et al.: Nanofiber based drug delivery systems for skin: a promising therapeutic approach. J. Drug Deliv. Sci. Technol. 41, 124–133 (2017)CrossRefGoogle Scholar
  7. 7.
    Garg, K., Bowlin, G.L.: Electrospinning jets and nanofibrous structures. Biomicrofluidics 5(1), 013403 (2011)CrossRefGoogle Scholar
  8. 8.
    Theron, S., Zussman, E., Yarin, A.: Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45(6), 2017–2030 (2004)CrossRefGoogle Scholar
  9. 9.
    Bhardwaj, N., Kundu, S.C.: Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28(3), 325–347 (2010)CrossRefGoogle Scholar
  10. 10.
    Teo, W.E., Ramakrishna, S.: A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14), R89 (2006)CrossRefGoogle Scholar
  11. 11.
    Cavaliere, S., et al.: Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ. Sci. 4(12), 4761–4785 (2011)CrossRefGoogle Scholar
  12. 12.
    Reneker, D.H., Chun, I.: Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3), 216 (1996)CrossRefGoogle Scholar
  13. 13.
    Ji, X., et al.: Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos. A Appl. Sci. Manuf. 87, 29–45 (2016)CrossRefGoogle Scholar
  14. 14.
    Kuilla, T., et al.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35(11), 1350–1375 (2010)CrossRefGoogle Scholar
  15. 15.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. In: Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp. 11–19. World Scientific (2010)Google Scholar
  16. 16.
    Service, R.F.: Materials science. Carbon sheets an atom thick give rise to graphene dreams. Science (New York, NY) 324(5929), 875 (2009)CrossRefGoogle Scholar
  17. 17.
    Pan, Y., Sahoo, N.G., Li, L.: The application of graphene oxide in drug delivery. Expert Opin. Drug Deliv. 9(11), 1365–1376 (2012)CrossRefGoogle Scholar
  18. 18.
    Kuila, T., et al.: Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57(7), 1061–1105 (2012)CrossRefGoogle Scholar
  19. 19.
    Gao, W.: The chemistry of graphene oxide. In: Graphene Oxide, (pp. 61–95). Springer, Berlin (2015)CrossRefGoogle Scholar
  20. 20.
    Wong, C.H.A., Pumera, M.: Stripping voltammetry at chemically modified graphenes. RSC Adv. 2(14), 6068–6072 (2012)CrossRefGoogle Scholar
  21. 21.
    Szabó, T., et al.: Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18(11), 2740–2749 (2006)CrossRefGoogle Scholar
  22. 22.
    Nethravathi, C., et al.: Graphite oxide-intercalated anionic clay and its decomposition to graphene–inorganic material nanocomposites. Langmuir 24(15), 8240–8244 (2008)CrossRefGoogle Scholar
  23. 23.
    Tung, V.C., et al.: High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4(1), 25 (2009)CrossRefGoogle Scholar
  24. 24.
    Staudenmaier, L.: Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 31(2), 1481–1487 (1898)CrossRefGoogle Scholar
  25. 25.
    Hummers Jr., W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)CrossRefGoogle Scholar
  26. 26.
    Gao, C., et al.: A green method to fast prepare single-layer graphene oxide. China patent CN104310385A, 28 Jan 2015 (in Chinese)Google Scholar
  27. 27.
    Yu, H., et al.: High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143 (2016)CrossRefGoogle Scholar
  28. 28.
    Stankovich, S., et al.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)CrossRefGoogle Scholar
  29. 29.
    Wang, H., et al.: Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 131(29), 9910–9911 (2009)CrossRefGoogle Scholar
  30. 30.
    Si, Y., Samulski, E.T.: Synthesis of water soluble graphene. Nano Lett. 8(6), 1679–1682 (2008)CrossRefGoogle Scholar
  31. 31.
    Wang, G., et al.: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008)CrossRefGoogle Scholar
  32. 32.
    Stankovich, S., et al.: Graphene-based composite materials. Nature 442(7100), 282 (2006)CrossRefGoogle Scholar
  33. 33.
    Zhang, J., et al.: Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010)CrossRefGoogle Scholar
  34. 34.
    Kim, H., Abdala, A.A., Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530 (2010)CrossRefGoogle Scholar
  35. 35.
    Schniepp, H.C., et al.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006)CrossRefGoogle Scholar
  36. 36.
    McAllister, M.J., et al.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)CrossRefGoogle Scholar
  37. 37.
    Steurer, P., et al.: Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 30(4–5), 316–327 (2009)CrossRefGoogle Scholar
  38. 38.
    Shen, B., et al.: Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS Appl. Mater. Interfaces 3(8), 3103–3109 (2011)CrossRefGoogle Scholar
  39. 39.
    Stankovich, S., et al.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16(2), 155–158 (2006)CrossRefGoogle Scholar
  40. 40.
    Huang, X., et al.: Graphene-based composites. Chem. Soc. Rev. 41(2), 666–686 (2012)CrossRefGoogle Scholar
  41. 41.
    Karousis, N., Tagmatarchis, N., Tasis, D.: Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 110(9), 5366–5397 (2010)CrossRefGoogle Scholar
  42. 42.
    Tasis, D., et al.: Chemistry of carbon nanotubes. Chem. Rev. 106(3), 1105–1136 (2006)CrossRefGoogle Scholar
  43. 43.
    Choi, E.-Y., et al.: Noncovalent functionalization of graphene with end-functional polymers. J. Mater. Chem. 20(10), 1907–1912 (2010)CrossRefGoogle Scholar
  44. 44.
    Liu, J., et al.: Synthesis, characterization, and multilayer assembly of pH sensitive graphene–polymer nanocomposites. Langmuir 26(12), 10068–10075 (2010)CrossRefGoogle Scholar
  45. 45.
    Liu, J., et al.: Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructures via self-assembly. J. Mater. Chem. 20(5), 900–906 (2010)CrossRefGoogle Scholar
  46. 46.
    Choi, B.G., et al.: Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4(5), 2910–2918 (2010)CrossRefGoogle Scholar
  47. 47.
    Salavagione, H.J., Gomez, M.A., Martinez, G.: Polymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Macromolecules 42(17), 6331–6334 (2009)CrossRefGoogle Scholar
  48. 48.
    Liu, Z., et al.: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130(33), 10876–10877 (2008)CrossRefGoogle Scholar
  49. 49.
    Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217 (2009)CrossRefGoogle Scholar
  50. 50.
    Shan, C., et al.: Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 25(20), 12030–12033 (2009)CrossRefGoogle Scholar
  51. 51.
    Lee, S.H., et al.: Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol. Rapid Commun. 31(3), 281–288 (2010)CrossRefGoogle Scholar
  52. 52.
    Niyogi, S., et al.: Spectroscopy of covalently functionalized graphene. Nano Lett. 10(10), 4061–4066 (2010)CrossRefGoogle Scholar
  53. 53.
    Liu, H., et al.: Photochemical reactivity of graphene. J. Am. Chem. Soc. 131(47), 17099–17101 (2009)CrossRefGoogle Scholar
  54. 54.
    Vadukumpully, S., et al.: Functionalization of surfactant wrapped graphene nanosheets with alkylazides for enhanced dispersibility. Nanoscale 3(1), 303–308 (2011)CrossRefGoogle Scholar
  55. 55.
    Liu, Y., et al.: Biocompatible graphene oxide-based glucose biosensors. Langmuir 26(9), 6158–6160 (2010)CrossRefGoogle Scholar
  56. 56.
    Du, J., Cheng, H.M.: The fabrication, properties, and uses of graphene/polymer composites. Macromol. Chem. Phys. 213(10–11), 1060–1077 (2012)CrossRefGoogle Scholar
  57. 57.
    Abdali, H., Ajji, A.: Preparation of electrospun nanocomposite nanofibers of polyaniline/poly(methyl methacrylate) with amino-functionalized graphene. Polymers 9(9), 453 (2017)CrossRefGoogle Scholar
  58. 58.
    He, H., Gao, C.: General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem. Mater. 22(17), 5054–5064 (2010)CrossRefGoogle Scholar
  59. 59.
    Jia, L., Liu, J., Wang, H.: Preparation of poly (diallyldimethylammonium chloride)-functionalized graphene and its applications for H2O2 and glucose sensing. Electrochim. Acta 111, 411–418 (2013)CrossRefGoogle Scholar
  60. 60.
    Moayeri, A., Ajji, A.: Fabrication of polyaniline/poly (ethylene oxide)/non-covalently functionalized graphene nanofibers via electrospinning. Synth. Met. 200, 7–15 (2015)CrossRefGoogle Scholar
  61. 61.
    Rafiee, M.A., et al.: Fracture and fatigue in graphene nanocomposites. Small 6(2), 179–183 (2010)CrossRefGoogle Scholar
  62. 62.
    Dasari, A., Yu, Z.-Z., Mai, Y.-W.: Electrically conductive and super-tough polyamide-based nanocomposites. Polymer 50(16), 4112–4121 (2009)CrossRefGoogle Scholar
  63. 63.
    Chatterjee, S., Nüesch, F., Chu, B.: Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide 12 fibers. Chem. Phys. Lett. 557, 92–96 (2013)CrossRefGoogle Scholar
  64. 64.
    Zheng, W., Lu, X., Wong, S.C.: Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J. Appl. Polym. Sci. 91(5), 2781–2788 (2004)CrossRefGoogle Scholar
  65. 65.
    Hou, W., et al.: Preparation and physico-mechanical properties of amine-functionalized graphene/polyamide 6 nanocomposite fiber as a high performance material. RSC Adv. 4(10), 4848–4855 (2014)CrossRefGoogle Scholar
  66. 66.
    Jiang, L., et al.: Preparation and characterization of graphene/poly (vinyl alcohol) nanocomposites. J. Appl. Polym. Sci. 118(1), 275–279 (2010)CrossRefGoogle Scholar
  67. 67.
    Liang, J., et al.: Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Func. Mater. 19(14), 2297–2302 (2009)CrossRefGoogle Scholar
  68. 68.
    Chailek, N., et al.: Crosslinking assisted fabrication of ultrafine poly (vinyl alcohol)/functionalized graphene electrospun nanofibers for crystal violet adsorption. J. Appl. Polym. Sci. 135(22), 46318 (2018)CrossRefGoogle Scholar
  69. 69.
    Chen, Y., et al.: Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites. Eur. Polymer J. 48(6), 1026–1033 (2012)CrossRefGoogle Scholar
  70. 70.
    Yu, J., et al.: Permittivity, thermal conductivity and thermal stability of poly (vinylidene fluoride)/graphene nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 18(2), 478–484 (2011)CrossRefGoogle Scholar
  71. 71.
    Zhang, H.-B., et al.: The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50(14), 5117–5125 (2012)CrossRefGoogle Scholar
  72. 72.
    Leyva-Porras, C., et al.: EELS analysis of Nylon 6 nanofibers reinforced with nitroxide-functionalized graphene oxide. Carbon 70, 164–172 (2014)CrossRefGoogle Scholar
  73. 73.
    Cao, L., et al.: Fabrication of chitosan/graphene oxide polymer nanofiber and its biocompatibility for cartilage tissue engineering. Mater. Sci. Eng. C 79, 697–701 (2017)CrossRefGoogle Scholar
  74. 74.
    Hong-Pei, L., et al.: Electrospinning gelatin/chitosan/hydroxyapatite/graphene oxide composite nanofibers with antibacterial properties. J. Inorg. Mater. 30(5), 516–522 (2015)CrossRefGoogle Scholar
  75. 75.
    Ardeshirzadeh, B., et al.: Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds. Mater. Sci. Eng. C 48, 384–390 (2015)CrossRefGoogle Scholar
  76. 76.
    Bao, Q., et al.: Graphene–polymer nanofiber membrane for ultrafast photonics. Adv. Func. Mater. 20(5), 782–791 (2010)CrossRefGoogle Scholar
  77. 77.
    Ding, B., et al.: Gas sensors based on electrospun nanofibers. Sensors 9(3), 1609–1624 (2009)CrossRefGoogle Scholar
  78. 78.
    Doshi, J., Reneker, D.H.: Electrospinning process and applications of electrospun fibers. J. Electrostat. 35(2–3), 151–160 (1995)CrossRefGoogle Scholar
  79. 79.
    Feng, L., Xie, N., Zhong, J.: Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7(5), 3919–3945 (2014)CrossRefGoogle Scholar
  80. 80.
    Zong, X., et al.: Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16), 4403–4412 (2002)CrossRefGoogle Scholar
  81. 81.
    Ramazani, S., Karimi, M.: Electrospinning of poly (ε-caprolactone) solutions containing graphene oxide: effects of graphene oxide content and oxidation level. Polym. Compos. 37(1), 131–140 (2016)CrossRefGoogle Scholar
  82. 82.
    Zhang, C., et al.: The surface grafting of graphene oxide with poly (ethylene glycol) as a reinforcement for poly (lactic acid) nanocomposite scaffolds for potential tissue engineering applications. J. Mech. Behav. Biomed. Mater. 53, 403–413 (2016)CrossRefGoogle Scholar
  83. 83.
    Das, S., et al.: Electrospinning of polymer nanofibers loaded with noncovalently functionalized graphene. J. Appl. Polym. Sci. 128(6), 4040–4046 (2013)CrossRefGoogle Scholar
  84. 84.
    Georgakilas, V., et al.: Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116(9), 5464–5519 (2016)CrossRefGoogle Scholar
  85. 85.
    Hsiao, S.-T., et al.: Preparation and characterization of silver nanoparticle-reduced graphene oxide decorated electrospun polyurethane fiber composites with an improved electrical property. Compos. Sci. Technol. 118, 171–177 (2015)CrossRefGoogle Scholar
  86. 86.
    Chee, W., et al.: Functionalized graphene oxide-reinforced electrospun carbon nanofibers as ultrathin supercapacitor electrode. J. Energy Chem. 26(4), 790–798 (2017)CrossRefGoogle Scholar
  87. 87.
    Moayeri, A., Ajji, A.: High capacitance carbon nanofibers from poly (acrylonitrile) and poly (vinylpyrrolidone)-functionalized graphene by electrospinning. J. Nanosci. Nanotechnol. 17(3), 1820–1829 (2017)CrossRefGoogle Scholar
  88. 88.
    Scaffaro, R., et al.: Electrospun PCL/GO-g-PEG structures: processing-morphology-properties relationships. Compos. A Appl. Sci. Manuf. 92, 97–107 (2017)CrossRefGoogle Scholar
  89. 89.
    Latif, U., Dickert, F.L.: Graphene hybrid materials in gas sensing applications. Sensors 15(12), 30504–30524 (2015)CrossRefGoogle Scholar
  90. 90.
    Llobet, E.: Gas sensors using carbon nanomaterials: a review. Sens. Actuators B Chem. 179, 32–45 (2013)CrossRefGoogle Scholar
  91. 91.
    Abideen, Z.U., et al.: Sensing behavior to ppm-level gases and synergistic sensing mechanism in metal-functionalized rGO-loaded ZnO nanofibers. Sens. Actuators B Chem. 255, 1884–1896 (2018)CrossRefGoogle Scholar
  92. 92.
    Li, L., et al.: Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor. Sens. Actuators B Chem. 252, 17–23 (2017)CrossRefGoogle Scholar
  93. 93.
    Ali, M.A., et al.: Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Appl. Mater. Interfaces 8(32), 20570–20582 (2016)CrossRefGoogle Scholar
  94. 94.
    Sun, Q., et al.: Characteristics of a pentacene thin film transistor with periodic groove patterned poly (methylmethacrylate) dielectrics. Appl. Phys. Lett. 96(10), 41 (2010)CrossRefGoogle Scholar
  95. 95.
    Ratcliff, E.L., Lee, P.A., Armstrong, N.R.: Work function control of hole-selective polymer/ITO anode contacts: an electrochemical doping study. J. Mater. Chem. 20(13), 2672–2679 (2010)CrossRefGoogle Scholar
  96. 96.
    Yoon, B.-J., et al.: Fabrication of flexible carbon nanotube field emitter arrays by direct microwave irradiation on organic polymer substrate. J. Am. Chem. Soc. 127(23), 8234–8235 (2005)CrossRefGoogle Scholar
  97. 97.
    Huang, Y.-L., et al.: Self-assembly of silver–graphene hybrid on electrospun polyurethane nanofibers as flexible transparent conductive thin films. Carbon 50(10), 3473–3481 (2012)CrossRefGoogle Scholar
  98. 98.
    Zhang, L., et al.: Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Appl. Catal. B 201, 470–478 (2017)CrossRefGoogle Scholar
  99. 99.
    Zhang, H., et al.: P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2010)CrossRefGoogle Scholar
  100. 100.
    Wu, M.-C., et al.: Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: decomposition of organic dyes and efficient H2 generation from ethanol-water mixtures. Nano Res. 4(4), 360–369 (2011)CrossRefGoogle Scholar
  101. 101.
    Lee, H.-G., et al.: Facile synthesis of functionalized graphene-palladium nanoparticle incorporated multicomponent TiO2 composite nanofibers. Mater. Chem. Phys. 154, 125–136 (2015)CrossRefGoogle Scholar
  102. 102.
    Abidin, S.N.J.S.Z., et al.: Electropolymerization of poly (3, 4-ethylenedioxythiophene) onto polyvinyl alcohol-graphene quantum dot-cobalt oxide nanofiber composite for high-performance supercapacitor. Electrochim. Acta (2017)Google Scholar
  103. 103.
    Mondal, S., Rana, U., Malik, S.: Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem. Commun. 51(62), 12365–12368 (2015)CrossRefGoogle Scholar
  104. 104.
    De Faria, A.F., et al.: Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide–silver nanocomposites. ACS Appl. Mater. Interfaces 7(23), 12751–12759 (2015)CrossRefGoogle Scholar
  105. 105.
    Ding, X., et al.: Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. J. Mater. Chem. A 2(31), 12355–12360 (2014)CrossRefGoogle Scholar
  106. 106.
    Li, S., et al.: One-step synthesis of graphene/polypyrrole nanofiber composites as cathode material for a biocompatible zinc/polymer battery. ACS Appl. Mater. Interfaces 6(19), 16679–16686 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringCREPEC, Polytechnique MontréalMontrealCanada
  2. 2.Ministry of EducationRiyadhSaudi Arabia

Personalised recommendations