Advertisement

3D Graphene and Its Nanocomposites: From Synthesis to Multifunctional Applications

  • Xin Tong
  • G. Zhang
  • Jai PrakashEmail author
  • Shuhui SunEmail author
Chapter
Part of the Carbon Nanostructures book series (CARBON)

Abstract

3D graphene based nanomaterials have been extensively used in various fields due to their excellent and tunable physio-chemical properties such as electrical conductivity, higher surface area, strength etc. Extensive research has been achieved for the built of 3 Dimensional graphene and its nanocomposites with excellent properties for multidisciplinary applications. The applications of these nanomaterials have been increased dramatically in the energy field for the recent years and it has become a rapidly developing area. This chapter focuses on the latest developments of these novel 3D graphene-based nanomaterial and their multifunctional applications in field of energy i.e. fuel cells and lithium-ion batteries.

Notes

Acknowledgements

The authors (JP, SS) acknowledge the financial supports from the Natural Sciences and Engineering Research Council of Canada (NSERC), Fonds de Recherche du Québec-Nature et Technologies (FRQNT). JP would like to acknowledge FRQNT for Merit Scholarship (Ranked#1, 2017–2018), department of science and technology (DST), India for the prestigious award of INSPIRE faculty (IFA/2015/MS-57), and Shastri Indo-Canadian Institute for SSTSG (2017–18) award.

References

  1. 1.
    Choi, H.J., Jung, S.M., Seo, J.M., Chang, D.W., Dai, L.M., Baek, J.B.: Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1(4), 534–551 (2012).  https://doi.org/10.1016/j.nanoen.2012.05.001CrossRefGoogle Scholar
  2. 2.
    Zhang, J., Zhao, F., Zhang, Z., Chen, N., Qu, L.: Dimension-tailored functional graphene structures for energy conversion and storage. Nanoscale 5(8), 3112–3126 (2013).  https://doi.org/10.1039/c3nr00011gCrossRefGoogle Scholar
  3. 3.
    Wang, D.W., Su, D.S.: Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 7(2), 576–591 (2014).  https://doi.org/10.1039/c3ee43463jCrossRefGoogle Scholar
  4. 4.
    Geng, D.S., Ding, N., Hor, T.S.A., Liu, Z.L., Sun, X.L., Zong, Y.: Potential of metal-free “graphene alloy” as electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 3(5), 1795–1810 (2015).  https://doi.org/10.1039/c4ta06008cCrossRefGoogle Scholar
  5. 5.
    Chabot, V., Higgins, D., Yu, A.P., Xiao, X.C., Chen, Z.W., Zhang, J.J.: A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7(5), 1564–1596 (2014).  https://doi.org/10.1039/c3ee43385dCrossRefGoogle Scholar
  6. 6.
    Holade, Y., Sahin, N.E., Servat, K., Napporn, T.W., Kokoh, K.B.: Recent advances in carbon supported metal nanoparticles preparation for oxygen reduction reaction in low temperature fuel cells. Catalysts 5(1), 310–348 (2015).  https://doi.org/10.3390/catal5010310CrossRefGoogle Scholar
  7. 7.
    Wei, Q.L., Tong, X., Zhang, G.X., Qiao, J.L., Gong, Q.J., Sun, S.H.: Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysts 5(3), 1574–1602 (2015).  https://doi.org/10.3390/catal5031574CrossRefGoogle Scholar
  8. 8.
    Ni, J.F., Li, Y.: Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 6(17), 1600278-n/a. UNSP 1600278 (2016).  https://doi.org/10.1002/aenm.201600278CrossRefGoogle Scholar
  9. 9.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007).  https://doi.org/10.1038/nmat1849CrossRefGoogle Scholar
  10. 10.
    Cong, H.P., Chen, J.F., Yu, S.H.: Graphene-based macroscopic assemblies and architectures: an emerging material system. Chem. Soc. Rev. 43(21), 7295–7325 (2014).  https://doi.org/10.1039/c4cs00181hCrossRefGoogle Scholar
  11. 11.
    Li, C., Shi, G.: Three-dimensional graphene architectures. Nanoscale 4(18), 5549–5563 (2012).  https://doi.org/10.1039/c2nr31467cCrossRefGoogle Scholar
  12. 12.
    Fang, Q.L., Shen, Y., Chen, B.L.: Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: a review. Chem. Eng. J. 264, 753–771 (2015).  https://doi.org/10.1016/j.cej.2014.12.001CrossRefGoogle Scholar
  13. 13.
    Gao, H., Duan, H.: 2D and 3D graphene materials: preparation and bioelectrochemical applications. Biosens. Bioelectron. 65, 404–419 (2015).  https://doi.org/10.1016/j.bios.2014.10.067CrossRefGoogle Scholar
  14. 14.
    Ma, Y.F., Chen, Y.S.: Three-dimensional graphene networks: synthesis, properties and applications. Natl. Sci. Rev. 2(1), 40–53 (2015).  https://doi.org/10.1093/nsr/nwu072CrossRefGoogle Scholar
  15. 15.
    Mao, S., Lu, G., Chen, J.: Three-dimensional graphene-based composites for energy applications. Nanoscale 7(16), 6924–6943 (2015).  https://doi.org/10.1039/c4nr06609jCrossRefGoogle Scholar
  16. 16.
    Wang, Z.L., Xu, D., Wang, H.G., Wu, Z., Zhang, X.B.: In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 7(3), 2422–2430 (2013).  https://doi.org/10.1021/nn3057388CrossRefGoogle Scholar
  17. 17.
    Worsley, M.A., Pauzauskie, P.J., Olson, T.Y., Biener, J., Satcher Jr., J.H., Baumann, T.F.: Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132(40), 14067–14069 (2010).  https://doi.org/10.1021/ja1072299CrossRefGoogle Scholar
  18. 18.
    Nguyen, D.D., Tai, N.H., Lee, S.B., Kuo, W.S.: Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ. Sci. 5(7), 7908–7912 (2012).  https://doi.org/10.1039/c2ee21848hCrossRefGoogle Scholar
  19. 19.
    Xu, Y., Sheng, K., Li, C., Shi, G.: Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7), 4324–4330 (2010).  https://doi.org/10.1021/nn101187zCrossRefGoogle Scholar
  20. 20.
    Wei, W., Yang, S., Zhou, H., Lieberwirth, I., Feng, X., Mullen, K.: 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 25(21), 2909–2914 (2013).  https://doi.org/10.1002/adma.201300445CrossRefGoogle Scholar
  21. 21.
    Shen, J., Zhu, Y., Yang, X., Li, C.: Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. (Camb.) 48(31), 3686–3699 (2012).  https://doi.org/10.1039/c2cc00110aCrossRefGoogle Scholar
  22. 22.
    Xu, Y., Shi, G., Duan, X.: Self-assembled three-dimensional graphene macrostructures: synthesis and applications in supercapacitors. Acc. Chem. Res. 48(6), 1666–1675 (2015).  https://doi.org/10.1021/acs.accounts.5b00117CrossRefGoogle Scholar
  23. 23.
    Wang, H., Yuan, X., Zeng, G., Wu, Y., Liu, Y., Jiang, Q., Gu, S.: Three dimensional graphene based materials: synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Adv. Colloid Interface Sci. 221, 41–59 (2015).  https://doi.org/10.1016/j.cis.2015.04.005CrossRefGoogle Scholar
  24. 24.
    Yan, Z., Yao, W., Hu, L., Liu, D., Wang, C., Lee, C.S.: Progress in the preparation and application of three-dimensional graphene-based porous nanocomposites. Nanoscale 7(13), 5563–5577 (2015).  https://doi.org/10.1039/c5nr00030kCrossRefGoogle Scholar
  25. 25.
    Mao, M., Hu, J.Y., Liu, H.T.: Graphene-based materials for flexible electrochemical energy storage. Int. J. Energy Res. 39(6), 727–740 (2015).  https://doi.org/10.1002/er.3256CrossRefGoogle Scholar
  26. 26.
    Zhang, Y.Z., Wang, Y., Cheng, T., Lai, W.Y., Pang, H., Huang, W.: Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem. Soc. Rev. 44(15), 5181–5199 (2015).  https://doi.org/10.1039/c5cs00174aCrossRefGoogle Scholar
  27. 27.
    Zheng, X.T., Ananthanarayanan, A., Luo, K.Q., Chen, P.: Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14), 1620–1636 (2015).  https://doi.org/10.1002/smll.201402648CrossRefGoogle Scholar
  28. 28.
    Patil, U., Lee, S.C., Kulkarni, S., Sohn, J.S., Nam, M.S., Han, S., Jun, S.C.: Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors. Nanoscale 7(16), 6999–7021 (2015).  https://doi.org/10.1039/c5nr01135cCrossRefGoogle Scholar
  29. 29.
    Liu, F., Seo, T.S.: A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv. Funct. Mater. 20(12), 1930–1936 (2010).  https://doi.org/10.1002/adfm.201000287CrossRefGoogle Scholar
  30. 30.
    Cong, H.-P., Ren, X.-C., Wang, P., Yu, S.-H.: Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6(3), 2693–2703 (2012).  https://doi.org/10.1021/nn300082kCrossRefGoogle Scholar
  31. 31.
    Chen, W., Li, S., Chen, C., Yan, L.: Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater. 23(47), 5679–5683 (2011)CrossRefGoogle Scholar
  32. 32.
    Sheng, K., Sun, Y., Li, C., Yuan, W., Shi, G.: Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci. Rep. 2, 247 (2012).  https://doi.org/10.1038/srep00247CrossRefGoogle Scholar
  33. 33.
    Choi, B.G., Yang, M., Hong, W.H., Choi, J.W., Huh, Y.S.: 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5), 4020–4028 (2012)CrossRefGoogle Scholar
  34. 34.
    Zhang, Z., Xiao, F., Qian, L., Xiao, J., Wang, S., Liu, Y.: Facile synthesis of 3D MnO2–graphene and carbon nanotube-graphene composite networks for high-performance, flexible, all-solid-state asymmetric supercapacitors. Adv. Energy Mater. 4(10), 1400064 (2014)CrossRefGoogle Scholar
  35. 35.
    Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S., Cheng, H.M.: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011).  https://doi.org/10.1038/nmat3001CrossRefGoogle Scholar
  36. 36.
    Cao, X., Shi, Y., Shi, W., Lu, G., Huang, X., Yan, Q., Zhang, Q., Zhang, H.: Preparation of novel 3D graphene networks for supercapacitor applications. Small 7(22), 3163–3168 (2011).  https://doi.org/10.1002/smll.201100990CrossRefGoogle Scholar
  37. 37.
    Dong, X., Wang, X., Wang, J., Song, H., Li, X., Wang, L., Chan-Park, M.B., Li, C.M., Chen, P.: Synthesis of a MnO2–graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode. Carbon 50(13), 4865–4870 (2012).  https://doi.org/10.1016/j.carbon.2012.06.014CrossRefGoogle Scholar
  38. 38.
    Ito, Y., Tanabe, Y., Qiu, H.J., Sugawara, K., Heguri, S., Tu, N.H., Huynh, K.K., Fujita, T., Takahashi, T., Tanigaki, K.: High-quality three-dimensional nanoporous graphene. Angew. Chem. Int. Ed. 53(19), 4822–4826 (2014)CrossRefGoogle Scholar
  39. 39.
    Li, W., Gao, S., Wu, L., Qiu, S., Guo, Y., Geng, X., Chen, M., Liao, S., Zhu, C., Gong, Y., Long, M., Xu, J., Wei, X., Sun, M., Liu, L.: High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions. Sci. Rep. 3, 2125 (2013).  https://doi.org/10.1038/srep02125CrossRefGoogle Scholar
  40. 40.
    Mecklenburg, M., Schuchardt, A., Mishra, Y.K., Kaps, S., Adelung, R., Lotnyk, A., Kienle, L., Schulte, K.: Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance. Adv. Mater. 24(26), 3486–3490 (2012).  https://doi.org/10.1002/adma.201200491CrossRefGoogle Scholar
  41. 41.
    Xiao, X., Beechem, T.E., Brumbach, M.T., Lambert, T.N., Davis, D.J., Michael, J.R., Washburn, C.M., Wang, J., Brozik, S.M., Wheeler, D.R., Burckel, D.B., Polsky, R.: Lithographically defined three-dimensional graphene structures. ACS Nano 6(4), 3573–3579 (2012).  https://doi.org/10.1021/nn300655cCrossRefGoogle Scholar
  42. 42.
    Zhou, M., Lin, T., Huang, F., Zhong, Y., Wang, Z., Tang, Y., Bi, H., Wan, D., Lin, J.: Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv. Func. Mater. 23(18), 2263–2269 (2013)CrossRefGoogle Scholar
  43. 43.
    Lv, Y., Wang, X., Mei, T., Li, J., Wang, J.: Single-step hydrothermal synthesis of N, S-dual-doped graphene networks as metal-free efficient electrocatalysts for oxygen reduction reaction. ChemistrySelect 3(11), 3241–3250 (2018).  https://doi.org/10.1002/slct.201800098CrossRefGoogle Scholar
  44. 44.
    Yang, Z., Nie, H., Xa, Chen, Chen, X., Huang, S.: Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. J. Power Sources 236, 238–249 (2013).  https://doi.org/10.1016/j.jpowsour.2013.02.057CrossRefGoogle Scholar
  45. 45.
    Wu, G., Zelenay, P.: Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 46(8), 1878–1889 (2013).  https://doi.org/10.1021/ar400011zCrossRefGoogle Scholar
  46. 46.
    Yang, Z., Ren, J., Zhang, Z., Chen, X., Guan, G., Qiu, L., Zhang, Y., Peng, H.: Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 115(11), 5159–5223 (2015).  https://doi.org/10.1021/cr5006217CrossRefGoogle Scholar
  47. 47.
    Guo, S., Zhang, S., Sun, S.: Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 52(33), 8526–8544 (2013).  https://doi.org/10.1002/anie.201207186CrossRefGoogle Scholar
  48. 48.
    Nie, Y., Li, L., Wei, Z.: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44(8), 2168–2201 (2015).  https://doi.org/10.1039/c4cs00484aCrossRefGoogle Scholar
  49. 49.
    Dai, L., Xue, Y., Qu, L., Choi, H.J., Baek, J.B.: Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015).  https://doi.org/10.1021/cr5003563CrossRefGoogle Scholar
  50. 50.
    Song, Z.X., Cheng, N.C., Lushington, A., Sun, X.L.: Recent progress on MOF-derived nanomaterials as advanced electrocatalysts in fuel cells. Catalysts 6(8), 116 (2016).  https://doi.org/10.3390/catal6080116CrossRefGoogle Scholar
  51. 51.
    Sun, D.M., Liu, C., Ren, W.C., Cheng, H.M.: A review of carbon nanotube-and graphene-based flexible thin-film transistors. Small 9(8), 1188–1205 (2013)CrossRefGoogle Scholar
  52. 52.
    Zhao, Y., Hu, C.G., Song, L., Wang, L.X., Shi, G.Q., Dai, L.M., Qu, L.T.: Functional graphene nanomesh foam. Energy Environ. Sci. 7(6), 1913–1918 (2014).  https://doi.org/10.1039/c4ee00106kCrossRefGoogle Scholar
  53. 53.
    Wang, X., Sun, G., Chen, P.: Three-dimensional porous architectures of carbon nanotubes and graphene sheets for energy applications. Front. Energy Res. 2(33) (2014).  https://doi.org/10.3389/fenrg.2014.00033
  54. 54.
    Qiu, H.J., Liu, L., Wang, Y.: Template-directed fabrication of 3D graphene-based composite and their electrochemical energy-related applications. Sci. Bull. 61(6), 443–450 (2016).  https://doi.org/10.1007/s11434-016-1024-zCrossRefGoogle Scholar
  55. 55.
    Liang, J., Jiao, Y., Jaroniec, M., Qiao, S.Z.: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. Engl. 51(46), 11496–11500 (2012).  https://doi.org/10.1002/anie.201206720CrossRefGoogle Scholar
  56. 56.
    Tong, X., Chen, S., Guo, C., Xia, X., Guo, X.Y.: Mesoporous NiCo2O4 nanoplates on three-dimensional graphene foam as an efficient electrocatalyst for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 8(42), 28274–28282 (2016).  https://doi.org/10.1021/acsami.5b10044CrossRefGoogle Scholar
  57. 57.
    Jin, Z., Nie, H., Yang, Z., Zhang, J., Liu, Z., Xu, X., Huang, S.: Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale 4(20), 6455–6460 (2012).  https://doi.org/10.1039/c2nr31858jCrossRefGoogle Scholar
  58. 58.
    Liu, J., Daio, T., Sasaki, K., Lyth, S.M.: Defective nitrogen-doped graphene foam: clarifying the role of nitrogen in non-precious ORR catalysts. Polym. Electrolyte Fuel Cells 14 64(3), 271–280 (2014).  https://doi.org/10.1149/06403.0271ecstCrossRefGoogle Scholar
  59. 59.
    Liu, J., Sasaki, K., Lyth, S.M.: Defective nitrogen-doped graphene foam: a non-precious electrocatalyst for the oxygen reduction reaction in alkaline medium. Polym. Electrolyte Fuel Cells 14 64(3), 1161–1172 (2014).  https://doi.org/10.1149/06403.1161ecstCrossRefGoogle Scholar
  60. 60.
    Liu, J.F., Takeshi, D., Orejon, D., Sasaki, K., Lyth, S.M.: Defective nitrogen-doped graphene foam: a metal-free, non-precious electrocatalyst for the oxygen reduction reaction in acid. J. Electrochem. Soc. 161(4), F544–F550 (2014).  https://doi.org/10.1149/2.095404jesCrossRefGoogle Scholar
  61. 61.
    Liu, J., Takeshi, D., Sasaki, K., Lyth, S.M.: Platinum-decorated nitrogen-doped graphene foam electrocatalysts. Fuel Cells 14(5), 728–734 (2014).  https://doi.org/10.1002/fuce.201300258CrossRefGoogle Scholar
  62. 62.
    Qin, Y., Li, J., Yuan, J., Kong, Y., Tao, Y.X., Lin, F.R., Li, S.: Hollow mesoporous carbon nitride nanosphere/three-dimensional graphene composite as high efficient electrocatalyst for oxygen reduction reaction. J. Power Sources 272, 696–702 (2014).  https://doi.org/10.1016/j.jpowsour.2014.09.017CrossRefGoogle Scholar
  63. 63.
    Wang, L., Sofer, Z., Ambrosi, A., Simek, P., Pumera, M.: 3D-graphene for electrocatalysis of oxygen reduction reaction: Increasing number of layers increases the catalytic effect. Electrochem. Commun. 46, 148–151 (2014).  https://doi.org/10.1016/j.elecom.2014.07.002CrossRefGoogle Scholar
  64. 64.
    Yuan, W., Li, J., Wang, L., Chen, P., Xie, A., Shen, Y.: Nanocomposite of N-doped TiO2 nanorods and graphene as an effective electrocatalyst for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 6(24), 21978–21985 (2014).  https://doi.org/10.1021/am507890hCrossRefGoogle Scholar
  65. 65.
    Chen, R.W., Yan, J., Liu, Y., Li, J.H.: Three-dimensional nitrogen-doped graphene/MnO nanoparticle hybrids as a high-performance catalyst for oxygen reduction reaction. J. Phys. Chem. C 119(15), 8032–8037 (2015).  https://doi.org/10.1021/acs.jpcc.5b00306CrossRefGoogle Scholar
  66. 66.
    Chen, S., Duan, J.J., Tang, Y.H., Jin, B., Qiao, S.Z.: Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst. Nano Energy 11, 11–18 (2015).  https://doi.org/10.1016/j.nanoen.2014.09.022CrossRefGoogle Scholar
  67. 67.
    Cheng, J.H., Li, Y.Y., Huang, X.D., Wang, Q.Q., Mei, A., Shen, P.K.: Highly stable electrocatalysts supported on nitrogen-self-doped three-dimensional graphene-like networks with hierarchical porous structures. J. Mater. Chem. A 3(4), 1492–1497 (2015).  https://doi.org/10.1039/c4ta05552gCrossRefGoogle Scholar
  68. 68.
    Lee, K.J., Sa, Y.J., Jeong, H.Y., Bielawski, C.W., Joo, S.H., Moon, H.R.: Simple coordination complex-derived three-dimensional mesoporous graphene as an efficient bifunctional oxygen electrocatalyst. Chem. Commun. (Camb.) 51(31), 6773–6776 (2015).  https://doi.org/10.1039/c5cc01123jCrossRefGoogle Scholar
  69. 69.
    Liu, Y., Li, J., Li, W.Z., Li, Y.M., Chen, Q.Y., Zhan, F.Q.: Nitrogen-doped graphene aerogel-supported spinel CoMn2O4 nanoparticles as an efficient catalyst for oxygen reduction reaction. J. Power Sources 299, 492–500 (2015).  https://doi.org/10.1016/j.jpowsour.2015.09.042CrossRefGoogle Scholar
  70. 70.
    Wang, M., Wang, J., Hou, Y., Shi, D., Wexler, D., Poynton, S.D., Slade, R.C., Zhang, W., Liu, H., Chen, J.: N-doped crumpled graphene derived from vapor phase deposition of PPy on graphene aerogel as an efficient oxygen reduction reaction electrocatalyst. ACS Appl. Mater. Interfaces 7(13), 7066–7072 (2015).  https://doi.org/10.1021/acsami.5b01025CrossRefGoogle Scholar
  71. 71.
    Wang, Z., Cao, X., Ping, J., Wang, Y., Lin, T., Huang, X., Ma, Q., Wang, F., He, C., Zhang, H.: Electrochemical doping of three-dimensional graphene networks used as efficient electrocatalysts for oxygen reduction reaction. Nanoscale 7(21), 9394–9398 (2015).  https://doi.org/10.1039/c4nr06631fCrossRefGoogle Scholar
  72. 72.
    Ye, D.X., Wang, L., Zhang, R., Liu, B.H., Wang, Y., Kong, J.L.: Facile preparation of N-doped mesocellular graphene foam from sludge flocs for highly efficient oxygen reduction reaction. J. Mater. Chem. A 3(29), 15171–15176 (2015).  https://doi.org/10.1039/c5ta03060aCrossRefGoogle Scholar
  73. 73.
    Yun, S., Lee, S., Shin, C., Park, S., Kwon, S.J., Park, H.S.: One-pot self-assembled, reduced graphene oxide/palladium nanoparticle hybrid aerogels for electrocatalytic applications. Electrochim. Acta 180, 902–908 (2015).  https://doi.org/10.1016/j.electacta.2015.08.157CrossRefGoogle Scholar
  74. 74.
    Zhou, X.J., Bai, Z.Y., Wu, M.J., Qiao, J.L., Chen, Z.W.: 3-dimensional porous N-doped graphene foam as a non-precious catalyst for the oxygen reduction reaction. J. Mater. Chem. A 3(7), 3343–3350 (2015).  https://doi.org/10.1039/c4ta06538gCrossRefGoogle Scholar
  75. 75.
    Fu, X., Choi, J.Y., Zamani, P., Jiang, G., Hoque, M.A., Hassan, F.M., Chen, Z.: Co-N decorated hierarchically porous graphene aerogel for efficient oxygen reduction reaction in acid. ACS Appl. Mater. Interfaces 8(10), 6488–6495 (2016).  https://doi.org/10.1021/acsami.5b12746CrossRefGoogle Scholar
  76. 76.
    Guo, W.H., Ma, X.X., Zhang, X.L., Zhang, Y.Q., Yu, D.L., He, X.Q.: Spinel CoMn2O4 nanoparticles supported on a nitrogen and phosphorus dual doped graphene aerogel as efficient electrocatalysts for the oxygen reduction reaction. RSC Adv. 6(99), 96436–96444 (2016).  https://doi.org/10.1039/c6ra16337hCrossRefGoogle Scholar
  77. 77.
    Ma, X.X., He, X.Q.: Cobalt oxide anchored on nitrogen and sulfur dual-doped graphene foam as an effective oxygen electrode catalyst in alkaline media. Appl. Mater. Today 4, 1–8 (2016).  https://doi.org/10.1016/j.apmt.2016.04.002CrossRefGoogle Scholar
  78. 78.
    Tang, S., Zhou, X.J., Xu, N.N., Bai, Z.Y., Qiao, J.L., Zhang, J.J.: Template-free synthesis of three-dimensional nanoporous N-doped graphene for high performance fuel cell oxygen reduction reaction in alkaline media. Appl. Energy 175, 405–413 (2016).  https://doi.org/10.1016/j.apenergy.2016.04.074CrossRefGoogle Scholar
  79. 79.
    Wang, M., Fang, Z., Zhang, K., Fang, J., Qin, F., Zhang, Z., Li, J., Liu, Y., Lai, Y.: Synergistically enhanced activity of graphene quantum dots/graphene hydrogel composites: a novel all-carbon hybrid electrocatalyst for metal/air batteries. Nanoscale 8(22), 11398–11402 (2016).  https://doi.org/10.1039/c6nr02622bCrossRefGoogle Scholar
  80. 80.
    Wang, M., Hou, Y., Slade, R.C., Wang, J., Shi, D., Wexler, D., Liu, H., Chen, J.: Core-shell Co/CoO integrated on 3D nitrogen doped reduced graphene oxide aerogel as an enhanced electrocatalyst for the oxygen reduction reaction. Front. Chem. 4, 36 (2016).  https://doi.org/10.3389/fchem.2016.00036CrossRefGoogle Scholar
  81. 81.
    Wu, M., Dou, Z.Y., Chang, J.J., Cui, L.L.: Nitrogen and sulfur co-doped graphene aerogels as an efficient metal-free catalyst for oxygen reduction reaction in an alkaline solution. RSC Adv. 6(27), 22781–22790 (2016).  https://doi.org/10.1039/c5ra22136fCrossRefGoogle Scholar
  82. 82.
    Yan, W.N., Cao, X.C., Tian, J.H., Jin, C., Ke, K., Yang, R.Z.: Nitrogen/sulfur dual-doped 3D reduced graphene oxide networks-supported CoFe2O4 with enhanced electrocatalytic activities for oxygen reduction and evolution reactions. Carbon 99, 195–202 (2016).  https://doi.org/10.1016/j.carbon.2015.12.011CrossRefGoogle Scholar
  83. 83.
    Zhu, Z., Yang, Y., Guan, Y., Xue, J.H., Cui, L.L.: Construction of a cobalt-embedded nitrogen-doped carbon material with the desired porosity derived from the confined growth of MOFs within graphene aerogels as a superior catalyst towards HER and ORR. J. Mater. Chem. A 4(40), 15536–15545 (2016).  https://doi.org/10.1039/c6ta05196kCrossRefGoogle Scholar
  84. 84.
    Yu, D.L., He, X.Q.: 3D cobalt-embedded nitrogen-doped graphene xerogel as an efficient electrocatalyst for oxygen reduction reaction in an alkaline medium. J. Appl. Electrochem. 47(1), 13–23 (2017).  https://doi.org/10.1007/s10800-016-1008-3CrossRefGoogle Scholar
  85. 85.
    Han, J., Huang, G., Wang, Z., Lu, Z., Du, J., Kashani, H., Chen, M.: Low-temperature carbide-mediated growth of bicontinuous nitrogen-doped mesoporous graphene as an efficient oxygen reduction electrocatalyst. Adv. Mater. 30(38), e1803588 (2018).  https://doi.org/10.1002/adma.201803588CrossRefGoogle Scholar
  86. 86.
    Xue, Q., Ding, Y., Xue, Y.Y., Li, F., Chen, P., Chen, Y.: 3D nitrogen-doped graphene aerogels as efficient electrocatalyst for the oxygen reduction reaction. Carbon 139, 137–144 (2018).  https://doi.org/10.1016/j.carbon.2018.06.052CrossRefGoogle Scholar
  87. 87.
    Zhang, T., Li, Z., Wang, L., Sun, P., Zhang, Z., Wang, S.: Spinel MnCo2O4 nanoparticles supported on three-dimensional graphene with enhanced mass transfer as an efficient electrocatalyst for the oxygen reduction reaction. Chemsuschem 11(16), 2730–2736 (2018).  https://doi.org/10.1002/cssc.201801070CrossRefGoogle Scholar
  88. 88.
    Nishi, Y.: The development of lithium ion secondary batteries. Chem. Rec. 1(5), 406–413 (2001).  https://doi.org/10.1016/S0378-7753(01)00887-4CrossRefGoogle Scholar
  89. 89.
    Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001).  https://doi.org/10.1038/35104644CrossRefGoogle Scholar
  90. 90.
    Scrosati, B., Garche, J.: Lithium batteries: status, prospects and future. J. Power Sources 195(9), 2419–2430 (2010).  https://doi.org/10.1016/j.jpowsour.2009.11.048CrossRefGoogle Scholar
  91. 91.
    Chen, J.S., Lou, X.W.: SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9(11), 1877–1893 (2013).  https://doi.org/10.1002/smll.201202601CrossRefGoogle Scholar
  92. 92.
    Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013).  https://doi.org/10.1021/ja3091438CrossRefGoogle Scholar
  93. 93.
    Srivastava, M., Singh, J., Kuila, T., Layek, R.K., Kim, N.H., Lee, J.H.: Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale 7(11), 4820–4868 (2015).  https://doi.org/10.1039/c4nr07068bCrossRefGoogle Scholar
  94. 94.
    Zhao, Y., Li, X.F., Yan, B., Li, D.J., Lawes, S., Sun, X.L.: Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: a review. J. Power Sources 274, 869–884 (2015).  https://doi.org/10.1016/j.jpowsour.2014.10.008CrossRefGoogle Scholar
  95. 95.
    Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D.: Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4(9), 3243–3262 (2011).  https://doi.org/10.1039/c1ee01598bCrossRefGoogle Scholar
  96. 96.
    Ji, L.W., Lin, Z., Alcoutlabi, M., Zhang, X.W.: Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4(8), 2682–2699 (2011).  https://doi.org/10.1039/c0ee00699hCrossRefGoogle Scholar
  97. 97.
    Zhang, W.J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196(1), 13–24 (2011).  https://doi.org/10.1016/j.jpowsour.2010.07.020CrossRefGoogle Scholar
  98. 98.
    Hu, M., Pang, X.L., Zhou, Z.: Recent progress in high-voltage lithium ion batteries. J. Power Sources 237, 229–242 (2013).  https://doi.org/10.1016/j.jpowsour.2013.03.024CrossRefGoogle Scholar
  99. 99.
    Reddy, M.V., Subba Rao, G.V., Chowdari, B.V.: Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013).  https://doi.org/10.1021/cr3001884CrossRefGoogle Scholar
  100. 100.
    Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Zaccaria, R.P., Capiglia, C.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014).  https://doi.org/10.1016/j.jpowsour.2013.11.103CrossRefGoogle Scholar
  101. 101.
    Zhou, X., Wan, L.J., Guo, Y.G.: Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25(15), 2152–2157 (2013).  https://doi.org/10.1002/adma.201300071CrossRefGoogle Scholar
  102. 102.
    Kucinskis, G., Bajars, G., Kleperis, J.: Graphene in lithium ion battery cathode materials: a review. J. Power Sources 240, 66–79 (2013).  https://doi.org/10.1016/j.jpowsour.2013.03.160CrossRefGoogle Scholar
  103. 103.
    Ma, D., Cao, Z., Hu, A.: Si-based anode materials for Li-ion batteries: a mini review. Nanomicro Lett. 6(4), 347–358 (2014).  https://doi.org/10.1007/s40820-014-0008-2CrossRefGoogle Scholar
  104. 104.
    Tucek, J., Kemp, K.C., Kim, K.S., Zboril, R.: Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 8(8), 7571–7612 (2014).  https://doi.org/10.1021/nn501836xCrossRefGoogle Scholar
  105. 105.
    Choi, N.S., Chen, Z., Freunberger, S.A., Ji, X., Sun, Y.K., Amine, K., Yushin, G., Nazar, L.F., Cho, J., Bruce, P.G.: Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. Engl. 51(40), 9994–10024 (2012).  https://doi.org/10.1002/anie.201201429CrossRefGoogle Scholar
  106. 106.
    Xin, S., Guo, Y.G., Wan, L.J.: Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 45(10), 1759–1769 (2012).  https://doi.org/10.1021/ar300094mCrossRefGoogle Scholar
  107. 107.
    Han, S., Wu, D., Li, S., Zhang, F., Feng, X.: Graphene: a two-dimensional platform for lithium storage. Small 9(8), 1173–1187 (2013).  https://doi.org/10.1002/smll.201203155CrossRefGoogle Scholar
  108. 108.
    Pumera, M.: Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4(3), 668–674 (2011).  https://doi.org/10.1039/c0ee00295jCrossRefGoogle Scholar
  109. 109.
    Sun, Y.Q., Wu, Q.O., Shi, G.Q.: Graphene based new energy materials. Energy Environ. Sci. 4(4), 1113–1132 (2011).  https://doi.org/10.1039/c0ee00683aCrossRefGoogle Scholar
  110. 110.
    Brownson, D.A.C., Kampouris, D.K., Banks, C.E.: An overview of graphene in energy production and storage applications. J. Power Sources 196(11), 4873–4885 (2011).  https://doi.org/10.1016/j.jpowsour.2011.02.022CrossRefGoogle Scholar
  111. 111.
    Guo, S., Dong, S.: Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 40(5), 2644–2672 (2011).  https://doi.org/10.1039/c0cs00079eCrossRefGoogle Scholar
  112. 112.
    Xu, C.H., Xu, B.H., Gu, Y., Xiong, Z.G., Sun, J., Zhao, X.S.: Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6(5), 1388–1414 (2013).  https://doi.org/10.1039/c3ee23870aCrossRefGoogle Scholar
  113. 113.
    Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., Pellegrini, V.: 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015).  https://doi.org/10.1126/science.1246501CrossRefGoogle Scholar
  114. 114.
    Raccichini, R., Varzi, A., Passerini, S., Scrosati, B.: The role of graphene for electrochemical energy storage. Nat. Mater. 14(3), 271–279 (2015).  https://doi.org/10.1038/nmat4170CrossRefGoogle Scholar
  115. 115.
    Wang, X.L., Shi, G.Q.: Flexible graphene devices related to energy conversion and storage. Energy Environ. Sci. 8(3), 790–823 (2015).  https://doi.org/10.1039/c4ee03685aCrossRefGoogle Scholar
  116. 116.
    Raccichini, R., Varzi, A., Wei, D., Passerini, S.: Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes. Adv. Mater. 29(11), 1603421-n/a (2017).  https://doi.org/10.1002/adma.201603421CrossRefGoogle Scholar
  117. 117.
    Sun, Y., Tang, J., Zhang, K., Yuan, J., Li, J., Zhu, D.M., Ozawa, K., Qin, L.C.: Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Nanoscale 9(7), 2585–2595 (2017).  https://doi.org/10.1039/c6nr07650eCrossRefGoogle Scholar
  118. 118.
    Xia, X.H., Chao, D.L., Zhang, Y.Q., Shen, Z.X., Fan, H.J.: Three-dimensional graphene and their integrated electrodes. Nano Today 9(6), 785–807 (2014).  https://doi.org/10.1016/j.nantod.2014.12.001CrossRefGoogle Scholar
  119. 119.
    Zai, J.T., Qian, X.F.: Three dimensional metal oxides-graphene composites and their applications in lithium ion batteries. RSC Adv. 5(12), 8814–8834 (2015).  https://doi.org/10.1039/c4ra11903gCrossRefGoogle Scholar
  120. 120.
    Cao, X., Shi, Y., Shi, W., Rui, X., Yan, Q., Kong, J., Zhang, H.: Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 9(20), 3433–3438 (2013).  https://doi.org/10.1002/smll.201202697CrossRefGoogle Scholar
  121. 121.
    Gong, Y., Yang, S., Liu, Z., Ma, L., Vajtai, R., Ajayan, P.M.: Graphene-network-backboned architectures for high-performance lithium storage. Adv. Mater. 25(29), 3979–3984 (2013).  https://doi.org/10.1002/adma.201301051CrossRefGoogle Scholar
  122. 122.
    Jiang, X., Yang, X.L., Zhu, Y.H., Shen, J.H., Fan, K.C., Li, C.Z.: In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries. J. Power Sources 237, 178–186 (2013).  https://doi.org/10.1016/j.jpowsour.2013.03.048CrossRefGoogle Scholar
  123. 123.
    Luo, J., Liu, J., Zeng, Z., Ng, C.F., Ma, L., Zhang, H., Lin, J., Shen, Z., Fan, H.J.: Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13(12), 6136–6143 (2013).  https://doi.org/10.1021/nl403461nCrossRefGoogle Scholar
  124. 124.
    Xiao, L., Wu, D., Han, S., Huang, Y., Li, S., He, M., Zhang, F., Feng, X.: Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl. Mater. Interfaces 5(9), 3764–3769 (2013).  https://doi.org/10.1021/am400387tCrossRefGoogle Scholar
  125. 125.
    Choi, S.H., Kang, Y.C.: Fe3O4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium ion batteries. Carbon 79, 58–66 (2014).  https://doi.org/10.1016/j.carbon.2014.07.042CrossRefGoogle Scholar
  126. 126.
    Jiang, Y., Jiang, Z.J., Cheng, S., Liu, M.L.: Fabrication of 3-dimensional porous graphene materials for lithium ion batteries. Electrochim. Acta 146, 437–446 (2014).  https://doi.org/10.1016/j.electacta.2014.09.059CrossRefGoogle Scholar
  127. 127.
    Qin, J., He, C., Zhao, N., Wang, Z., Shi, C., Liu, E.Z., Li, J.: Graphene networks anchored with sn@graphene as lithium ion battery anode. ACS Nano 8(2), 1728–1738 (2014).  https://doi.org/10.1021/nn406105nCrossRefGoogle Scholar
  128. 128.
    Qiu, B., Xing, M., Zhang, J.: Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136(16), 5852–5855 (2014).  https://doi.org/10.1021/ja500873uCrossRefGoogle Scholar
  129. 129.
    Wang, R., Xu, C., Sun, J., Gao, L.: Three-dimensional Fe2O3 nanocubes/nitrogen-doped graphene aerogels: nucleation mechanism and lithium storage properties. Sci. Rep. 4, 7171 (2014).  https://doi.org/10.1038/srep07171CrossRefGoogle Scholar
  130. 130.
    Wang, R., Xu, C., Sun, J., Gao, L., Yao, H.: Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. ACS Appl. Mater. Interfaces 6(5), 3427–3436 (2014).  https://doi.org/10.1021/am405557cCrossRefGoogle Scholar
  131. 131.
    Deng, J.W., Chen, L.F., Sun, Y.Y., Ma, M.H., Fu, L.: Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle life lithium battery anode. Carbon 92, 177–184 (2015).  https://doi.org/10.1016/j.carbon.2015.04.021CrossRefGoogle Scholar
  132. 132.
    Ren, Z.M., Yu, S.Q., Fu, X.X., Shi, L., Sun, C.X., Fan, C.Y., Liu, Q., Qian, G.D., Wang, Z.Y.: Coordination-driven self-assembly: construction of a Fe3O4-graphene hybrid 3D framework and its long cycle lifetime for lithium-ion batteries. RSC Adv. 5(50), 40249–40257 (2015).  https://doi.org/10.1039/c5ra04837kCrossRefGoogle Scholar
  133. 133.
    Sui, Z.-Y., Wang, C., Shu, K., Yang, Q.-S., Ge, Y., Wallace, G.G., Han, B.-H.: Manganese dioxide-anchored three-dimensional nitrogen-doped graphene hybrid aerogels as excellent anode materials for lithium ion batteries. J. Mater. Chem. A 3(19), 10403–10412 (2015).  https://doi.org/10.1039/C5TA01508ACrossRefGoogle Scholar
  134. 134.
    Tang, H., Sui, Y., Zhu, X., Bao, Z.: Synthesis of Mn3O4-based aerogels and their lithium-storage abilities. Nanoscale Res. Lett. 10(1), 960 (2015).  https://doi.org/10.1186/s11671-015-0960-xCrossRefGoogle Scholar
  135. 135.
    Ye, J.C., Charnvanichborikarn, S., Worsley, M.A., Kucheyev, S.O., Wood, B.C., Wang, Y.M.: Enhanced electrochemical performance of ion-beam-treated 3D graphene aerogels for lithium ion batteries. Carbon 85, 269–278 (2015).  https://doi.org/10.1016/j.carbon.2014.12.097CrossRefGoogle Scholar
  136. 136.
    Wang, Y., Jin, Y., Zhao, C., Pan, E., Jia, M.: 1D ultrafine SnO2 nanorods anchored on 3D graphene aerogels with hierarchical porous structures for high-performance lithium/sodium storage. J. Colloid Interface Sci. 532, 352–362 (2018).  https://doi.org/10.1016/j.jcis.2018.08.011CrossRefGoogle Scholar
  137. 137.
    Zhao, B., Wang, Z., Chen, F., Yang, Y., Gao, Y., Chen, L., Jiao, Z., Cheng, L., Jiang, Y.: Three-dimensional interconnected spherical graphene framework/SnS nanocomposite for anode material with superior lithium storage performance: complete reversibility of Li2S. ACS Appl. Mater. Interfaces 9(2), 1407–1415 (2017).  https://doi.org/10.1021/acsami.6b10708CrossRefGoogle Scholar
  138. 138.
    Zhang, Y., Chen, P., Gao, X., Wang, B., Liu, H., Wu, H., Liu, H., Dou, S.: Nitrogen-doped graphene ribbon assembled core-sheath MnO@Graphene scrolls as hierarchically ordered 3D porous electrodes for fast and durable lithium storage. Adv. Funct. Mater. 26(43), 7754–7765 (2016).  https://doi.org/10.1002/adfm.201603716CrossRefGoogle Scholar
  139. 139.
    Zhang, X., Zhang, Q.W., Sun, Y.F., Zhang, P.Y., Gao, X., Zhang, W., Guo, J.X.: MoS2-graphene hybrid nanosheets constructed 3D architectures with improved electrochemical performance for lithium-ion batteries and hydrogen evolution. Electrochim. Acta 189, 224–230 (2016).  https://doi.org/10.1016/j.electacta.2015.12.082CrossRefGoogle Scholar
  140. 140.
    Zhang, C., Yu, J.S.: Morphology-tuned synthesis of NiCo2O4-coated 3D graphene architectures used as binder-free electrodes for lithium-ion batteries. Chemistry 22(13), 4422–4430 (2016).  https://doi.org/10.1002/chem.201504386CrossRefGoogle Scholar
  141. 141.
    Yu, H., Ye, D., Butburee, T., Wang, L., Dargusch, M.: Green synthesis of porous three-dimensional nitrogen-doped graphene foam for electrochemical applications. ACS Appl. Mater. Interfaces 8(4), 2505–2510 (2016).  https://doi.org/10.1021/acsami.5b09030CrossRefGoogle Scholar
  142. 142.
    Luo, B., Qiu, T.F., Hao, L., Wang, B., Jin, M.H., Li, X.L., Zhi, L.J.: Graphene-templated formation of 3D tin-based foams for lithium ion storage applications with a long lifespan. J. Mater. Chem. A 4(2), 362–367 (2016).  https://doi.org/10.1039/c5ta08508jCrossRefGoogle Scholar
  143. 143.
    Liu, Y., Wang, X., Wan, W., Li, L., Dong, Y., Zhao, Z., Qiu, J.: Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture. Nanoscale 8(4), 2159–2167 (2016).  https://doi.org/10.1039/c5nr05909gCrossRefGoogle Scholar
  144. 144.
    Liu, L., Yang, X., Lv, C., Zhu, A., Zhu, X., Guo, S., Chen, C., Yang, D.: Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance. ACS Appl. Mater. Interfaces 8(11), 7047–7053 (2016).  https://doi.org/10.1021/acsami.5b12427CrossRefGoogle Scholar
  145. 145.
    Jiang, L., Lin, B., Li, X., Song, X., Xia, H., Li, L., Zeng, H.: Monolayer MoS2-graphene hybrid aerogels with controllable porosity for lithium-ion batteries with high reversible capacity. ACS Appl. Mater. Interfaces 8(4), 2680–2687 (2016).  https://doi.org/10.1021/acsami.5b10692CrossRefGoogle Scholar
  146. 146.
    He, J.R., Li, P.J., Lv, W.Q., Wen, K.C., Chen, Y.F., Zhang, W.L., Li, Y.R., Qin, W., He, W.D.: Three-dimensional hierarchically structured aerogels constructed with layered MoS2/graphene nanosheets as free-standing anodes for high-performance lithium ion batteries. Electrochim. Acta 215, 12–18 (2016).  https://doi.org/10.1016/j.electacta.2016.08.068CrossRefGoogle Scholar
  147. 147.
    He, D., Li, L., Bai, F., Zha, C., Shen, L., Kung, H.H., Bao, N.: One-pot synthesis of pomegranate-structured Fe3O4/carbon nanospheres-doped graphene aerogel for high-rate lithium ion batteries. Chemistry 22(13), 4454–4459 (2016).  https://doi.org/10.1002/chem.201504429CrossRefGoogle Scholar
  148. 148.
    Gu, X.Y., Wu, F.L., Lei, B.B., Wang, J., Chen, Z.L., Xie, K., Song, Y., Sun, D.L., Sun, L.X., Zhou, H.Y., Fang, F.: Three-dimensional nitrogen-doped graphene frameworks anchored with bamboo-like tungsten oxide nanorods as high performance anode materials for lithium ion batteries. J. Power Sources 320, 231–238 (2016).  https://doi.org/10.1016/j.jpowsour.2016.04.103CrossRefGoogle Scholar
  149. 149.
    Bai, D., Wang, F., Lv, J., Zhang, F., Xu, S.: Triple-confined well-dispersed biactive NiCo2S4/Ni0.96S on graphene aerogel for high-efficiency lithium storage. ACS Appl. Mater. Interfaces 8(48), 32853–32861 (2016).  https://doi.org/10.1021/acsami.6b11389CrossRefGoogle Scholar
  150. 150.
    Zhang, W., Zhu, J., Ang, H., Zeng, Y., Xiao, N., Gao, Y., Liu, W., Hng, H.H., Yan, Q.: Binder-free graphene foams for O2 electrodes of Li-O2 batteries. Nanoscale 5(20), 9651–9658 (2013).  https://doi.org/10.1039/c3nr03321jCrossRefGoogle Scholar
  151. 151.
    Ye, S., Feng, J., Wu, P.: Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode. ACS Appl. Mater. Interfaces 5(15), 7122–7129 (2013).  https://doi.org/10.1021/am401458xCrossRefGoogle Scholar
  152. 152.
    Tang, Y.F., Huang, F.Q., Bi, H., Liu, Z.Q., Wan, D.Y.: Highly conductive three-dimensional graphene for enhancing the rate performance of LiFePO4 cathode. J. Power Sources 203, 130–134 (2012).  https://doi.org/10.1016/j.jpowsour.2011.12.011CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Energy, Materials and TelecommunicationsInstitut National de La Recherche Scientifique (INRS)MontrealCanada
  2. 2.Department of ChemistryNational Institute of Technology HamirpurHamirpurIndia

Personalised recommendations