Advertisement

Graphene Functionalizations on Copper by Spectroscopic Techniques

  • Mehmet Gülcan
  • Ayşenur Aygün
  • Fatıma Almousa
  • Hakan Burhan
  • Anish Khan
  • Fatih ŞenEmail author
Chapter
Part of the Carbon Nanostructures book series (CARBON)

Abstract

Graphene is a two-dimensional allotrope of the carbon element, which is one of the most powerful materials of the 21st century. In order to facilitate the processing of the graphene, solvent-supported methods such as rotation coating, layer by layer assembly, and filtration are used. Single layer graphene prevents agglomeration of the material while reducing reactions occur. According to the studies in the literature, the chemical functionalization of graphene is performed by covalent and non-covalent modification techniques on substrate like copper. Besides, graphene can be used in many material production areas, such as polymer nanocomposites, drug delivery system, supercapacitor devices, solar cells, biosensors, and memory devices.

Keywords

Graphene Functionalization Copper Spectroscopy 

References

  1. 1.
    Abrahamson, J.T., Sempere, B., Walsh, M.P., Forman, J.M., Şen, F., Şen, S., Mahajan, S.G., Paulus, G.L.C., Wang, Q.H., Choi, W., Strano, M.S.: Excess thermopower and the theory of thermopower waves. ACS Nano 7, 6533–6544 (2013).  https://doi.org/10.1021/nn402411kCrossRefGoogle Scholar
  2. 2.
    Aday, B., Pamuk, H., Kaya, M., Sen, F.: Graphene Oxide as highly effective and readily recyclable catalyst using for the One-Pot synthesis of 1,8-Dioxoacridine derivatives. J. Nanosci. Nanotechnol. 16, 6498–6504 (2016).  https://doi.org/10.1166/jnn.2016.12432CrossRefGoogle Scholar
  3. 3.
    Aday, B., Yıldız, Y., Ulus, R., Eris, S., Sen, F., Kaya, M.: One-Pot, efficient and green synthesis of Acridinedione derivatives using highly monodisperse platinum nanoparticles supported with reduced Graphene Oxide. New J. Chem. 40, 748–754 (2016).  https://doi.org/10.1039/C5NJ02098KCrossRefGoogle Scholar
  4. 4.
    Akocak, S., Şen, B., Lolak, N., Şavk, A., Koca, M., Kuzu, S., Şen, F.: One-Pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored Graphene Oxide as highly efficient and recyclable catalyst. Nano-Struct. Nano-Objects 11, 25–31 (2017).  https://doi.org/10.1016/j.nanoso.2017.06.002CrossRefGoogle Scholar
  5. 5.
    Al-Mashat, L., Shin, K., Kalantar-zadeh, K., Plessis, J.D., Han, S.H., Kojima, R.W., Kaner, R.B., Li, D., Gou, X., Ippolito, S.J., Wlodarski, W.: Graphene/Polyaniline nanocomposite for hydrogen sensing. J. Phys. Chem. C 114, 16168–16173 (2010).  https://doi.org/10.1021/jp103134uCrossRefGoogle Scholar
  6. 6.
    Ambrosi, A., Pumera, M.: The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties. Nanoscale 6, 472–476 (2014).  https://doi.org/10.1039/C3NR05230CCrossRefGoogle Scholar
  7. 7.
    Ayranci, R., Baskaya, G., Guzel, M., Bozkurt, S., Ak, M., Savk, A., Sen, F.: Activated Carbon furnished monodisperse Pt nanocomposites as a superior adsorbent for methylene blue removal from aqueous solutions. Nano-Struct. Nano-Objects 11, 13–19 (2017).  https://doi.org/10.1016/j.nanoso.2017.05.008CrossRefGoogle Scholar
  8. 8.
    Ayranci, R., Başkaya, G., Güzel, M., Bozkurt, S., Şen, F., Ak, M.: Carbon based nanomaterials for high performance optoelectrochemical systems. ChemistrySelect 2, 1548–1555 (2017).  https://doi.org/10.1002/slct.201601632CrossRefGoogle Scholar
  9. 9.
    Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, YIl, Kim, Y.-J., Kim, K.S., Özyilmaz, B., Ahn, J.-H., Hong, B.H., Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).  https://doi.org/10.1038/nnano.2010.132CrossRefGoogle Scholar
  10. 10.
    Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).  https://doi.org/10.1021/nl0731872CrossRefGoogle Scholar
  11. 11.
    Baskaya, G., Esirden, İ., Erken, E., Sen, F., Kaya, M.: Synthesis of 5-Substituted-1H-Tetrazole derivatives using monodisperse carbon black decorated Pt nanoparticles as heterogeneous nanocatalysts. J. Nanosci. Nanotechnol. 17, 1992–1999 (2017).  https://doi.org/10.1166/jnn.2017.12867CrossRefGoogle Scholar
  12. 12.
    Başkaya, G., Yıldız, Y., Savk, A., Okyay, T.O., Eriş, S., Sert, H., Şen, F.: Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens. Bioelectron. 91, 728–733 (2017).  https://doi.org/10.1016/j.bios.2017.01.045CrossRefGoogle Scholar
  13. 13.
    Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: Electronic confinement and coherence in patterned epitaxial graphene. Science (80-) 312, 1191–1196 (2006).  https://doi.org/10.1126/science.1125925CrossRefGoogle Scholar
  14. 14.
    Bourlinos, A.B., Gournis, D., Petridis, D., Szabó, T., Szeri, A., Dékány, I.: Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050–6055 (2003).  https://doi.org/10.1021/la026525hCrossRefGoogle Scholar
  15. 15.
    Bozkurt, S., Tosun, B., Sen, B., Akocak, S., Savk, A., Ebeoğlugil, M.F., Sen, F.: A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Anal. Chim. Acta 989, 88–94 (2017).  https://doi.org/10.1016/j.aca.2017.07.051CrossRefGoogle Scholar
  16. 16.
    Campion, A., Kambhampati, P.: Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–243 (1998).  https://doi.org/10.1039/a827241zCrossRefGoogle Scholar
  17. 17.
    Çelik, B., Başkaya, G., Sert, H., Karatepe, Ö., Erken, E., Şen, F.: Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. Int. J. Hydrogen Energy 41, 5661–5669 (2016).  https://doi.org/10.1016/j.ijhydene.2016.02.061CrossRefGoogle Scholar
  18. 18.
    Çelik, B., Erken, E., Eriş, S., Yıldız, Y., Şahin, B., Pamuk, H., Sen, F.: Highly monodisperse Pt(0)@AC NPs as highly efficient and reusable catalysts: the effect of the surfactant on their catalytic activities in room temperature dehydrocoupling of DMAB. Catal. Sci. Technol. 6, 1685–1692 (2016).  https://doi.org/10.1039/C5CY01371BCrossRefGoogle Scholar
  19. 19.
    Çelik, B., Kuzu, S., Erken, E., Sert, H., Koşkun, Y., Şen, F.: Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 Alcohol Oxidation. Int. J. Hydrogen Energy 41, 3093–3101 (2016).  https://doi.org/10.1016/j.ijhydene.2015.12.138CrossRefGoogle Scholar
  20. 20.
    Çelik, B., Yildiz, Y., Sert, H., Erken, E., Koşkun, Y., Şen, F.: Monodispersed Palladium-Cobalt alloy nanoparticles assembled on Poly(N-vinyl-pyrrolidone) (PVP) as a highly effective catalyst for Dimethylamine Borane (DMAB). RSC Adv 6, 24097–24102 (2016).  https://doi.org/10.1039/c6ra00536eCrossRefGoogle Scholar
  21. 21.
    Chen, D., Tang, L., Li, J.: Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39, 3157–3180 (2010).  https://doi.org/10.1039/b923596eCrossRefGoogle Scholar
  22. 22.
    Daşdelen, Z., Yıldız, Y., Eriş, S., Şen, F.: Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP Hybride material for methanol oxidation reaction. Appl. Catal. B Environ. 219, 511–516 (2017).  https://doi.org/10.1016/j.apcatb.2017.08.014CrossRefGoogle Scholar
  23. 23.
    Demir, E., Savk, A., Sen, B., Sen, F.: A novel monodisperse metal nanoparticles anchored graphene oxide as counter electrode for dye-sensitized solar cells. Nano-Struct. Nano-Objects 12, 41–45 (2017).  https://doi.org/10.1016/j.nanoso.2017.08.018CrossRefGoogle Scholar
  24. 24.
    Demir, E., Sen, B., Sen, F.: Highly efficient Pt nanoparticles and f-MWCNT nanocomposites based counter electrodes for dye-sensitized solar cells. Nano-Struct. Nano-Objects 11, 39–45 (2017).  https://doi.org/10.1016/j.nanoso.2017.06.003CrossRefGoogle Scholar
  25. 25.
    Demirci, T., Çelik, B., Yildiz, Y., Eriş, S., Arslan, M., Sen, F., Kilbas, B.: One-pot synthesis of hantzsch dihydropyridines using a highly efficient and stable PdRuNi@GO catalyst. RSC Adv 6, 76948–76956 (2016).  https://doi.org/10.1039/c6ra13142eCrossRefGoogle Scholar
  26. 26.
    Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).  https://doi.org/10.1038/nature06016CrossRefGoogle Scholar
  27. 27.
    Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).  https://doi.org/10.1039/b917103gCrossRefGoogle Scholar
  28. 28.
    Eda, G., Chhowalla, M.: Graphene-based composite thin films for electronics. Nano Lett. 9, 814–818 (2009).  https://doi.org/10.1021/nl8035367CrossRefGoogle Scholar
  29. 29.
    Eris, S., Daşdelen, Z., Sen, F.: Investigation of electrocatalytic activity and stability of Pt@F-VC catalyst prepared by in-situ synthesis for methanol electrooxidation. Int. J. Hydrogen Energy 43, 385–390 (2018).  https://doi.org/10.1016/j.ijhydene.2017.11.063CrossRefGoogle Scholar
  30. 30.
    Eris, S., Daşdelen, Z., Sen, F.: Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells. J. Colloid Interface Sci. 513, 767–773 (2018).  https://doi.org/10.1016/j.jcis.2017.11.085CrossRefGoogle Scholar
  31. 31.
    Eris, S., Daşdelen, Z., Yıldız, Y., Sen, F.: Nanostructured Polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for methanol oxidation. Int. J. Hydrogen Energy 43, 1337–1343 (2018).  https://doi.org/10.1016/j.ijhydene.2017.11.051CrossRefGoogle Scholar
  32. 32.
    Erken, E., Esirden, İ., Kaya, M., Sen, F.: A rapid and novel method for the synthesis of 5-Substituted 1H-Tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation. RSC Adv. 5, 68558–68564 (2015).  https://doi.org/10.1039/C5RA11426HCrossRefGoogle Scholar
  33. 33.
    Erken, E., Pamuk, H., Karatepe, Ö., Başkaya, G., Sert, H., Kalfa, O.M., Şen, F.: New Pt(0) nanoparticles as highly active and reusable catalysts in the C1–C3 Alcohol Oxidation and the room temperature dehydrocoupling of Dimethylamine-Borane (DMAB). J. Clust. Sci. 27, 9–23 (2016).  https://doi.org/10.1007/s10876-015-0892-8CrossRefGoogle Scholar
  34. 34.
    Erken, E., Yıldız, Y., Kilbaş, B., Şen, F.: Synthesis and characterization of nearly monodisperse Pt Nanoparticles for C 1 to C 3 Alcohol oxidation and dehydrogenation of Dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol. 16, 5944–5950 (2016).  https://doi.org/10.1166/jnn.2016.11683CrossRefGoogle Scholar
  35. 35.
    Ertan, S., Şen, F., Şen, S., Gökağaç, G.: Platinum nanocatalysts prepared with different surfactants for C1–C3 Alcohol oxidations and their surface morphologies by AFM. J. Nanoparticle Res. 14, 922–934 (2012).  https://doi.org/10.1007/s11051-012-0922-5CrossRefGoogle Scholar
  36. 36.
    Esirden, İ., Erken, E., Kaya, M., Sen, F.: Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-Substituted 1H-Tetrazole derivatives. Catal. Sci. Technol. 5, 4452–4457 (2015).  https://doi.org/10.1039/C5CY00864FCrossRefGoogle Scholar
  37. 37.
    Fang, M., Wang, K., Lu, H., Yang, Y., Nutt, S.: Single-layer graphene nanosheets with controlled grafting of polymer chains. J. Mater. Chem. 20, 1982–1992 (2010).  https://doi.org/10.1039/b919078cCrossRefGoogle Scholar
  38. 38.
    Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401–187404 (2006).  https://doi.org/10.1103/PhysRevLett.97.187401CrossRefGoogle Scholar
  39. 39.
    Gao, W., Alemany, L.B., Ci, L., Ajayan, P.M.: New Insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009).  https://doi.org/10.1038/nchem.281CrossRefGoogle Scholar
  40. 40.
    Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., Kim, K.S.: Functionalization of graphene: covalent and non-covalent approach. Chem. Rev. 112, 6156–6214 (2012).  https://doi.org/10.1021/cr3000412CrossRefGoogle Scholar
  41. 41.
    Giraldo, J.P., Landry, M.P., Faltermeier, S.M., McNicholas, T.P., Iverson, N.M., Boghossian, A.A., Reuel, N.F., Hilmer, A.J., Sen, F., Brew, J.A., Strano, M.S.: Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).  https://doi.org/10.1038/nmat3890CrossRefGoogle Scholar
  42. 42.
    Göksu, H., Çelik, B., Yıldız, Y., Şen, F., Kılbaş, B.: Superior monodisperse CNT-Supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in aqueous medium. ChemistrySelect 1, 2366–2372 (2016).  https://doi.org/10.1002/slct.201600509CrossRefGoogle Scholar
  43. 43.
    Goksu, H., Sert, H., Kilbas, B., Sen, F.: Recent advances in the reduction of nitro compounds by heterogenous catalysts. Curr. Org. Chem. 21, 794–820 (2017).  https://doi.org/10.2174/1385272820666160525123907CrossRefGoogle Scholar
  44. 44.
    Goksu, H., Yıldız, Y., Çelik, B., Yazici, M., Kilbas, B., Sen, F.: Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of Dimethylamine-Borane in the presence of a reduced graphene oxide furnished Platinum nanocatalyst. Catal. Sci. Technol. 6, 2318–2324 (2016).  https://doi.org/10.1039/C5CY01462JCrossRefGoogle Scholar
  45. 45.
    Göksu, H., Yıldız, Y., Çelik, B., Yazıcı, M., Kılbaş, B., Şen, F.: Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of Aryl Halides via Ammonia Borane. ChemistrySelect 1, 953–958 (2016).  https://doi.org/10.1002/slct.201600207CrossRefGoogle Scholar
  46. 46.
    Goksu, H., Zengin, N., Karaosman, A., Sen, F.: Highly active and reusable Pd/AlO(OH) nanoparticles for the Suzuki Cross-coupling reaction. Curr. Organocatal. 5, 34–41 (2018).  https://doi.org/10.2174/2213337205666180614114550CrossRefGoogle Scholar
  47. 47.
    Gulçin, İ., Taslimi, P., Aygün, A., Sadeghian, N., Bastem, E., Kufrevioglu, O.I., Turkan, F., Şen, F.: Antidiabetic and antiparasitic potentials: inhibition effects of some natural antioxidant Compounds on Α-Glycosidase, Α-Amylase and Human Glutathione S-Transferase enzymes. Int. J. Biol. Macromol. 119, 741–746 (2018).  https://doi.org/10.1016/j.ijbiomac.2018.08.001CrossRefGoogle Scholar
  48. 48.
    Günbatar, S., Aygun, A., Karataş, Y., Gülcan, M., Şen, F.: Carbon-nanotube-based Rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of Dimethylamineborane at room temperature. J. Colloid Interface Sci. 530, 321–327 (2018).  https://doi.org/10.1016/j.jcis.2018.06.100CrossRefGoogle Scholar
  49. 49.
    Gupta, A., Chen, G., Joshi, P., Tadigadapa, S., Eklund, P.C.: Raman scattering from high-frequency phonons in supported N-Graphene layer films. Nano Lett. 6, 2667–2673 (2006).  https://doi.org/10.1021/nl061420aCrossRefGoogle Scholar
  50. 50.
    Hallam, T., Berner, N.C., Yim, C., Duesberg, G.S.: Strain, bubbles, dirt, and folds: a study of graphene polymer-assisted transfer. Adv. Mater. Interfaces 1, 1400115–1400122 (2014).  https://doi.org/10.1002/admi.201400115CrossRefGoogle Scholar
  51. 51.
    Hamilton, C.E., Lomeda, J.R., Sun, Z., Tour, J.M., Barron, A.R.: High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 9, 3460–3462 (2009).  https://doi.org/10.1021/nl9016623CrossRefGoogle Scholar
  52. 52.
    Hao, R., Qian, W., Zhang, L., Hou, Y.: Aqueous dispersions of TCNQ-Anion-stabilized graphene sheets. Chem. Commun. pp. 6576–6578 (2008).  https://doi.org/10.1039/b816971c
  53. 53.
    Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol 3, 563–568 (2008).  https://doi.org/10.1038/nnano.2008.215CrossRefGoogle Scholar
  54. 54.
    Huang, S., Ling, X., Liang, L., Song, Y., Fang, W., Zhang, J., Kong, J., Meunier, V., Dresselhaus, M.S.: Molecular selectivity of graphene-enhanced raman scattering. Nano Lett. 15, 2892–2901 (2015).  https://doi.org/10.1021/nl5045988CrossRefGoogle Scholar
  55. 55.
    Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).  https://doi.org/10.1021/ja01539a017CrossRefGoogle Scholar
  56. 56.
    Iverson, N.M., Barone, P.W., Shandell, M., Trudel, L.J., Sen, S., Sen, F., Ivanov, V., Atolia, E., Farias, E., McNicholas, T.P., Reuel, N., Parry, N.M.A., Wogan, G.N., Strano, M.S.: In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 8, 873–880 (2013).  https://doi.org/10.1038/nnano.2013.222CrossRefGoogle Scholar
  57. 57.
    Karatepe, Ö., Yıldız, Y., Pamuk, H., Eris, S., Dasdelen, Z., Sen, F.: Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy–PANI nanocomposites as a novel catalyst for the electro-oxidation of methanol. RSC Adv. 6, 50851–50857 (2016).  https://doi.org/10.1039/C6RA06210ECrossRefGoogle Scholar
  58. 58.
    Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).  https://doi.org/10.1038/nature07719CrossRefGoogle Scholar
  59. 59.
    Koskun, Y., Şavk, A., Şen, B., Şen, F.: Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal. Chim. Acta. 1010, 37–43 (2018).  https://doi.org/10.1016/j.aca.2018.01.035CrossRefGoogle Scholar
  60. 60.
    Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).  https://doi.org/10.1038/nature07872CrossRefGoogle Scholar
  61. 61.
    Kovaříček, P., Bastl, Z., Valeš, V., Kalbac, M.: Covalent reactions on chemical vapor deposition grown graphene studied by surface-enhanced raman spectroscopy. Chem - A Eur J 22, 5404–5408 (2016).  https://doi.org/10.1002/chem.201504689CrossRefGoogle Scholar
  62. 62.
    Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: C2F, BN, and C nanoshell elasticity from AB initio computations. Phys. Rev. B 64, 235406–235416 (2001).  https://doi.org/10.1103/PhysRevB.64.235406CrossRefGoogle Scholar
  63. 63.
    Kuila, T., Bose, S., Hong, C.E., Uddin, M.E., Khanra, P., Kim, N.H., Lee, J.H.: Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon N Y 49, 1033–1037 (2011).  https://doi.org/10.1016/j.carbon.2010.10.031CrossRefGoogle Scholar
  64. 64.
    Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, N.H., Lee, J.H.: chemical functionalization of graphene and its applications. Prog. Mater Sci. 57, 1061–1105 (2012).  https://doi.org/10.1016/j.pmatsci.2012.03.002CrossRefGoogle Scholar
  65. 65.
    Larisika, M., Kotlowski, C., Steininger, C., Mastrogiacomo, R., Pelosi, P., Schütz, S., Peteu, S.F., Kleber, C., Reiner-Rozman, C., Nowak, C., Knoll, W.: Electronic olfactory sensor based on A. mellifera odorant-binding protein 14 on a reduced graphene oxide field-effect transistor. Angew Chemie. Int. Ed. 54, 13245–13248 (2015).  https://doi.org/10.1002/anie.201505712CrossRefGoogle Scholar
  66. 66.
    Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (80-) 321, 385–388 (2008).  https://doi.org/10.1126/science.1157996CrossRefGoogle Scholar
  67. 67.
    Lee, D.Y., Khatun, Z., Lee, J.-H., Lee, Y., In, I.: Blood compatible graphene/heparin conjugate through noncovalent chemistry. Biomacromol 12, 336–341 (2011).  https://doi.org/10.1021/bm101031aCrossRefGoogle Scholar
  68. 68.
    Lee, W.H., Park, J., Kim, Y., Kim, K.S., Hong, B.H., Cho, K.: Control of graphene field-effect transistors by interfacial hydrophobic self-assembled monolayers. Adv. Mater. 23, 3460–3464 (2011).  https://doi.org/10.1002/adma.201101340CrossRefGoogle Scholar
  69. 69.
    Lee, W.H., Park, J., Kim, Y., Kim, K.S., Hong, B.H., Cho, K.: Control of graphene field-effect transistors by interfacial hydrophobic self-assembled monolayers. Adv. Mater. 23, 3460–3464 (2011).  https://doi.org/10.1002/adma.201101340CrossRefGoogle Scholar
  70. 70.
    Li, D., Müller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).  https://doi.org/10.1038/nnano.2007.451CrossRefGoogle Scholar
  71. 71.
    Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science (80-) 324, 1312–1314 (2009).  https://doi.org/10.1126/science.1171245CrossRefGoogle Scholar
  72. 72.
    Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., Chen, J.: One-step Ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518–1525 (2008).  https://doi.org/10.1002/adfm.200700797CrossRefGoogle Scholar
  73. 73.
    Loh, K.P., Bao, Q., Ang, P.K., Yang, J.: The chemistry of graphene. J. Mater. Chem. 20, 2277–2289 (2010).  https://doi.org/10.1039/b920539jCrossRefGoogle Scholar
  74. 74.
    Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Zhiming, W., McGovern, I.T., Duesberg, G.S., Coleman, J.N.: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009).  https://doi.org/10.1021/ja807449uCrossRefGoogle Scholar
  75. 75.
    Lotya, M., King, P.J., Khan, U., De, S., Coleman, J.N.: High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4, 3155–3162 (2010).  https://doi.org/10.1021/nn1005304CrossRefGoogle Scholar
  76. 76.
    Lupina, G., Kitzmann, J., Costina, I., Lukosius, M., Wenger, C., Wolff, A., Vaziri, S., Östling, M., Pasternak, I., Krajewska, A., Strupinski, W., Kataria, S., Gahoi, A., Lemme, M.C., Ruhl, G., Zoth, G., Luxenhofer, O., Mehr, W.: Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 9, 4776–4785 (2015).  https://doi.org/10.1021/acsnano.5b01261CrossRefGoogle Scholar
  77. 77.
    Matsuo, Y., Sakai, Y., Fukutsuka, T., Sugie, Y.: Preparation of pillared carbons by pyrolysis of silylated graphite oxide. Chem. Lett. 36, 1050–1051 (2007).  https://doi.org/10.1246/cl.2007.1050CrossRefGoogle Scholar
  78. 78.
    Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007).  https://doi.org/10.1038/nature05545CrossRefGoogle Scholar
  79. 79.
    Min, S.K., Kim, W.Y., Cho, Y., Kim, K.S.: Fast DNA sequencing with a graphene-based nanochannel device. Nat. Nanotechnol. 6, 162–165 (2011).  https://doi.org/10.1038/nnano.2010.283CrossRefGoogle Scholar
  80. 80.
    Muñoz, R., Gómez-Aleixandre, C.: Review of CVD synthesis of graphene. Chem. Vap. Depos. 19, 297–322 (2013).  https://doi.org/10.1002/cvde.201300051CrossRefGoogle Scholar
  81. 81.
    Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science (80-) 320, 1308–1308 (2008).  https://doi.org/10.1126/science.1156965CrossRefGoogle Scholar
  82. 82.
    Nemes-Incze, P., Osváth, Z., Kamarás, K., Biró, L.P.: Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscop. Carbon N Y 46, 1435–1442 (2008).  https://doi.org/10.1016/j.carbon.2008.06.022CrossRefGoogle Scholar
  83. 83.
    Nethravathi, C., Rajamathi, J.T., Ravishankar, N., Shivakumara, C., Rajamathi, M.: Graphite oxide-intercalated anionic clay and its decomposition to graphene-inorganic material nanocomposites. Langmuir 24, 8240–8244 (2008).  https://doi.org/10.1021/la8000027CrossRefGoogle Scholar
  84. 84.
    Novoselov, K.S.: Electric field effect in atomically thin carbon films. Science (80-) 306, 666–669 (2004).  https://doi.org/10.1126/science.1102896CrossRefGoogle Scholar
  85. 85.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005).  https://doi.org/10.1038/nature04233CrossRefGoogle Scholar
  86. 86.
    Novoselov, K.S., McCann, E., Morozov, S.V., Fal’ko, V.I., Katsnelson, M.I., Zeitler, U., Jiang, D., Schedin, F., Geim, A.K.: Unconventional quantum Hall effect and Berry’s Phase of 2π in Bilayer Graphene. Nat. Phys. 2, 177–180 (2006).  https://doi.org/10.1038/nphys245CrossRefGoogle Scholar
  87. 87.
    Ozturk, Z., Sen, F., Sen, S., Gokagac, G.: The preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. J. Mater. Sci. 47, 8134–8144 (2012).  https://doi.org/10.1007/s10853-012-6709-3CrossRefGoogle Scholar
  88. 88.
    Pamuk, H., Aday, B., Şen, F., Kaya, M.: Pt NPs@GO as a highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives. RSC Adv. 5, 49295–49300 (2015).  https://doi.org/10.1039/C5RA06441DCrossRefGoogle Scholar
  89. 89.
    Parades, J.I., Villar-Rodil, S., Martínez-Alonso, A., Tascón, J.M.D.: Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008).  https://doi.org/10.1021/la801744aCrossRefGoogle Scholar
  90. 90.
    Park, J., Jo, S.B., Yu, Y.-J., Kim, Y., Yang, J.W., Lee, W.H., Kim, H.H., Hong, B.H., Kim, P., Cho, K., Kim, K.S.: Single-gate bandgap opening of bilayer graphene by dual molecular doping. Adv. Mater. 24, 407–411 (2012).  https://doi.org/10.1002/adma.201103411CrossRefGoogle Scholar
  91. 91.
    Park, J., Lee, W.H., Huh, S., Sim, S.H., Bin, Kim S., Cho, K., Hong, B.H., Kim, K.S.: Work-function engineering of graphene electrodes by self-assembled monolayers for high-performance organic field-effect transistors. J. Phys. Chem. Lett. 2, 841–845 (2011).  https://doi.org/10.1021/jz200265wCrossRefGoogle Scholar
  92. 92.
    Park, M.J., Lee, J.K., Lee, B.S., Lee, Y.W., Choi, I.S., Lee, S.G.: Covalent modification of multiwalled carbon nanotubes with imidazolium-based ionic liquids: Effect of anions on solubility. Chem. Mater. 18, 1546–1551 (2006).  https://doi.org/10.1021/cm0511421CrossRefGoogle Scholar
  93. 93.
    Park, S., An, J., Piner, R.D., Jung, I., Yang, D., Velamakanni, A., Nguyen, S.T., Ruoff, R.S.: Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592–6594 (2008).  https://doi.org/10.1021/cm801932uCrossRefGoogle Scholar
  94. 94.
    Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009).  https://doi.org/10.1038/nnano.2009.58CrossRefGoogle Scholar
  95. 95.
    Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Jing, K.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).  https://doi.org/10.1021/nl801827vCrossRefGoogle Scholar
  96. 96.
    Şahin, B., Aygün, A., Gündüz, H., Şahin, K., Demir, E., Akocak, S., Şen, F.: Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf. B Biointerfaces 163, 119–124 (2018).  https://doi.org/10.1016/j.colsurfb.2017.12.042CrossRefGoogle Scholar
  97. 97.
    Şahin, B., Demir, E., Aygün, A., Gündüz, H., Şen, F.: Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line. J. Biotechnol. 260, 79–83 (2017).  https://doi.org/10.1016/j.jbiotec.2017.09.012CrossRefGoogle Scholar
  98. 98.
    Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007).  https://doi.org/10.1038/nmat1967CrossRefGoogle Scholar
  99. 99.
    Şen, B., Akdere, E.H., Şavk, A., Gültekin, E., Paralı, Ö., Göksu, H., Şen, F.: A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of Aryl Aldehydes together with malononitrile. Appl. Catal. B Environ. 225, 148–153 (2018).  https://doi.org/10.1016/j.apcatb.2017.11.067CrossRefGoogle Scholar
  100. 100.
    Şen, B., Aygün, A., Okyay, T.O., Şavk, A., Kartop, R., Şen, F.: Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of Dimethylamine-borane. Int. J. Hydrogen Energy 43, 20176–20182 (2018).  https://doi.org/10.1016/j.ijhydene.2018.03.175CrossRefGoogle Scholar
  101. 101.
    Şen, B., Demirkan, B., Levent, M., Şavk, A., Şen, F.: Silica-based monodisperse PdCo nanohybrids as highly efficient and stable nanocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 20234–20242 (2018).  https://doi.org/10.1016/j.ijhydene.2018.07.080CrossRefGoogle Scholar
  102. 102.
    Şen, B., Demirkan, B., Şavk, A., Karahan Gülbay, S., Şen, F.: Trimetallic PdRuNi nanocomposites decorated on graphene oxide: a superior catalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 17984–17992 (2018).  https://doi.org/10.1016/j.ijhydene.2018.07.122CrossRefGoogle Scholar
  103. 103.
    Sen, B., Demirkan, B., Şimşek, B., Savk, A., Sen, F.: Monodisperse Palladium nanocatalysts for dehydrocoupling of Dimethylamineborane. Nano-Struct. Nano-Objects 16, 209–214 (2018).  https://doi.org/10.1016/j.nanoso.2018.07.008CrossRefGoogle Scholar
  104. 104.
    Sen, B., Kuyuldar, E., Demirkan, B., Onal Okyay, T., Şavk, A., Sen, F.: Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of Dimethylamine Borane. J. Colloid Interf. Sci. 526, 480–486 (2018).  https://doi.org/10.1016/j.jcis.2018.05.021CrossRefGoogle Scholar
  105. 105.
    Şen, B., Kuzu, S., Demir, E., Akocak, SüleymanŞSen F.: Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of Dimethylamine–borane. Int. J. Hydrogen Energy 42, 23292–23298 (2017).  https://doi.org/10.1016/j.ijhydene.2017.06.032CrossRefGoogle Scholar
  106. 106.
    Şen, B., Kuzu, S., Demir, E., Akocak, S., Şen, F.: Polymer-graphene hybride decorated Pt nanoparticles as highly efficient and reusable catalyst for the dehydrogenation of Dimethylamine–borane at room temperature. Int. J. Hydrogen Energy 42, 23284–23291 (2017).  https://doi.org/10.1016/j.ijhydene.2017.05.112CrossRefGoogle Scholar
  107. 107.
    Sen, B., Kuzu, S., Demir, E., Onal Okyay, T., Sen, F.: Hydrogen liberation from the dehydrocoupling of dimethylamine–borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide. Int. J. Hydrogen Energy 42, 23299–23306 (2017).  https://doi.org/10.1016/j.ijhydene.2017.04.213CrossRefGoogle Scholar
  108. 108.
    Şen, B., Kuzu, S., Demir, E., Yıldırır, E., Şen, F.: Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium-nickel alloy nanoparticles assembled on PEDOT. Int. J. Hydrogen Energy 42, 23307–23314 (2017).  https://doi.org/10.1016/j.ijhydene.2017.05.115CrossRefGoogle Scholar
  109. 109.
    Şen, B., Lolak, N., Paralı, Ö., Koca, M., Şavk, A., Akocak, S., Şen, F.: Bimetallic PdRu/graphene oxide based catalysts for one-pot three-component synthesis of 2-amino-4H-chromene derivatives. Nano-Struct. Nano-Objects 12, 33–40 (2017).  https://doi.org/10.1016/j.nanoso.2017.08.013CrossRefGoogle Scholar
  110. 110.
    Sen, B., Şavk, A., Kuyuldar, E., Karahan Gülbay, S., Sen, F.: Hydrogen liberation from the hydrolytic dehydrogenation of hydrazine borane in acidic media. Int. J. Hydrogen Energy 43, 17978–17983 (2018).  https://doi.org/10.1016/j.ijhydene.2018.03.225CrossRefGoogle Scholar
  111. 111.
    Sen, B., Şavk, A., Sen, F.: Highly efficient monodisperse pt nanoparticles confined in the carbon black hybrid material for hydrogen liberation. J. Colloid Interf. Sci. 520, 112–118 (2018).  https://doi.org/10.1016/j.jcis.2018.03.004CrossRefGoogle Scholar
  112. 112.
    Sen, F., Boghossian, A.A., Sen, S., Ulissi, Z.W., Zhang, J., Strano, M.S.: Observation of oscillatory surface reactions of Riboflavin, Trolox, and singlet oxygen using single carbon nanotube fluorescence spectroscopy. ACS Nano 6, 10632–10645 (2012).  https://doi.org/10.1021/nn303716nCrossRefGoogle Scholar
  113. 113.
    Şen, F., Gökaǧaç, G.: Different sized platinum nanoparticles supported on carbon: An XPS study on these methanol oxidation catalysts. J. Phys. Chem. C 111, 5715–5720 (2007).  https://doi.org/10.1021/jp068381bCrossRefGoogle Scholar
  114. 114.
    Şen, F., Gökaǧaç, G.: Improving catalytic efficiency in the methanol oxidation reaction by inserting Ru in face-centered cubic Pt nanoparticles prepared by a new surfactant, Tert-octanethiol. Energy Fuels 22, 1858–1864 (2008).  https://doi.org/10.1021/ef700575tCrossRefGoogle Scholar
  115. 115.
    Şen, F., Gökaǧaç, G.: Pt nanoparticles synthesized with new surfactants: Improvement in C1-C3 alcohol oxidation catalytic activity. J. Appl. Electrochem. 44, 199–207 (2014).  https://doi.org/10.1007/s10800-013-0631-5CrossRefGoogle Scholar
  116. 116.
    Şen, F., Gökağaç, G., Şen, S.: High performance Pt Nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions. J Nanoparticle Res. 15, 1979–1988 (2013).  https://doi.org/10.1007/s11051-013-1979-5CrossRefGoogle Scholar
  117. 117.
    Sen, F., Karatas, Y., Gulcan, M., Zahmakiran, M.: Amylamine stabilized Platinum(0) nanoparticles: Active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane. RSC Adv. 4, 1526–1531 (2014).  https://doi.org/10.1039/c3ra43701aCrossRefGoogle Scholar
  118. 118.
    Şen, F., Şen, S., Gökaǧaç, G.: Efficiency enhancement of methanol/ethanol oxidation reactions on Pt Nanoparticles prepared using a new surfactant, 1,1-Dimethyl Heptanethiol. Phys. Chem. Chem. Phys. 13, 1676–1684 (2011).  https://doi.org/10.1039/c0cp01212bCrossRefGoogle Scholar
  119. 119.
    Sen, S., Sen, F., Boghossian, A.A., Zhang, J., Strano, M.S.: Effect of reductive dithiothreitol and Trolox on nitric oxide quenching of single-walled carbon nanotubes. J. Phys. Chem. C 117, 593–602 (2013).  https://doi.org/10.1021/jp307175fCrossRefGoogle Scholar
  120. 120.
    Sert, H., Yıldız, Y., Okyay, T.O., Gezer, B., Dasdelen, Z., Sen, B., Sen, F.: Monodisperse Mw-Pt NPs@VC as highly efficient and reusable adsorbents for methylene blue removal. J. Clust. Sci. 27, 1953–1962 (2016).  https://doi.org/10.1007/s10876-016-1054-3CrossRefGoogle Scholar
  121. 121.
    Sert, H., Yıldız, Y., Onal Okyay, T., Sen, B., Gezer, B., Bozkurt, S., Ba, G., Sen, F.: Activated carbon furnished monodisperse Pt nanocomposites as a superior adsorbent for methylene blue removal from aqueous solutions. J. Nanosci. Nanotechnol. 17, 1–6 (2017).  https://doi.org/10.1166/jnn.2017.13776CrossRefGoogle Scholar
  122. 122.
    Shao, Y., Wang, J., Engelhard, M., Wang, C., Lin, Y.: Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem. 20, 743–748 (2010).  https://doi.org/10.1039/B917975ECrossRefGoogle Scholar
  123. 123.
    Shukla, S., Saxena, S.: Spectroscopic investigation of confinement effects on optical properties of graphene oxide. Appl. Phys. Lett. 98, 073104–073106 (2011).  https://doi.org/10.1063/1.3555438CrossRefGoogle Scholar
  124. 124.
    Si, Y., Samulski, E.T.: Synthesis of water soluble graphene. Nano Lett. 8, 1679–1682 (2008).  https://doi.org/10.1021/nl080604hCrossRefGoogle Scholar
  125. 125.
    Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.B.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006).  https://doi.org/10.1038/nature04969CrossRefGoogle Scholar
  126. 126.
    Stoller, M.D., Park, S., Yanwu, Z., An, J., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008).  https://doi.org/10.1021/nl802558yCrossRefGoogle Scholar
  127. 127.
    Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y., Tour, J.M.: Growth of graphene from solid carbon sources. Nature 468, 549–552 (2010).  https://doi.org/10.1038/nature09579CrossRefGoogle Scholar
  128. 128.
    Szabó, T., Berkesi, O., Forgó, P., Josepovits, K., Sanakis, Y., Petridis, D., Dékány, I.: Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006).  https://doi.org/10.1021/cm060258+
  129. 129.
    Szabó, T., Szeri, A., Dékány, I.: Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon N Y 43, 87–94 (2005).  https://doi.org/10.1016/j.carbon.2004.08.025CrossRefGoogle Scholar
  130. 130.
    Tasic, A., Sredovic-Ignjatovic, I., Ignjatovic, L., Andjelkovic, I., Antic, M., Rajakovic, L.: Investigation of different extraction procedures for the determination of major and trace elements in coal by ICP-AES and Ion chromatography. J. Serbian Chem. Soc. 81, 403–417 (2016).  https://doi.org/10.2298/JSC150429078TCrossRefGoogle Scholar
  131. 131.
    Tehrani, Z., Burwell, G., Azmi, M.A.M., Castaing, A., Rickman, R., Almarashi, J., Dunstan, P., Beigi, A.M., Doak, S.H., Guy, O.J.: Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker. 2D Mater 1, 025004–23 (2014).  https://doi.org/10.1088/2053-1583/1/2/025004CrossRefGoogle Scholar
  132. 132.
    Ulissi, Z.W., Sen, F., Gong, X., Sen, S., Iverson, N., Boghossian, A.A., Godoy, L.C., Wogan, G.N., Mukhopadhyay, D., Strano, M.S.: spatiotemporal intracellular nitric oxide signaling captured using internalized, near-infrared fluorescent carbon nanotube nanosensors. Nano Lett. 14, 4887–4894 (2014).  https://doi.org/10.1021/nl502338yCrossRefGoogle Scholar
  133. 133.
    Ulus, R., Yıldız, Y., Eriş, S., Aday, B., Şen, F., Kaya, M.: Functionalized multi-walled carbon nanotubes (f-MWCNT) as highly efficient and reusable heterogeneous catalysts for the synthesis of acridinedione derivatives. ChemistrySelect 1, 3861–3865 (2016).  https://doi.org/10.1002/slct.201600719CrossRefGoogle Scholar
  134. 134.
    Van Noorden, R.: Chemistry: The trials of new carbon. Nature 469, 14–16 (2011).  https://doi.org/10.1038/469014aCrossRefGoogle Scholar
  135. 135.
    Varghese, S.S., Lonkar, S., Singh, K.K., Swaminathan, S., Abdala, A.: Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 218, 160–183 (2015).  https://doi.org/10.1016/j.snb.2015.04.062CrossRefGoogle Scholar
  136. 136.
    Wang, Q.H., Hersam, M.C.: Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nat. Chem. 1, 206–211 (2009).  https://doi.org/10.1038/nchem.212CrossRefGoogle Scholar
  137. 137.
    Wang, Y., Li, Z., Wang, J., Li, J., Lin, Y.: Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 29, 205–212 (2011).  https://doi.org/10.1016/j.tibtech.2011.01.008CrossRefGoogle Scholar
  138. 138.
    Wang, Y., Ni, Z., Yu, T., Shen, Z.X., Wang, H., Wu, Y., Chen, W., Shen, W.A.T.: Raman studies of monolayer graphene: The substrate effect. J. Phys. Chem. C 112, 10637–10640 (2008).  https://doi.org/10.1021/jp8008404CrossRefGoogle Scholar
  139. 139.
    Williams, G., Seger, B., Kamat, P.V.: TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008).  https://doi.org/10.1021/nn800251fCrossRefGoogle Scholar
  140. 140.
    Yi, J.W., Park, J., Kim, K.S., Kim, B.H.: PH-responsive self-duplex of (Py)A-substituted oligodeoxyadenylate in graphene oxide solution as a molecular switch. Org. Biomol. Chem. 9, 7434–7438 (2011).  https://doi.org/10.1039/c1ob06037fCrossRefGoogle Scholar
  141. 141.
    Yildiz, Y., Okyay, T.O., Sen, B., Gezer, B., Kuzu, S., Savk, A., Demir, E., Dasdelen, Z., Sert, H., Sen, F.: Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. ChemistrySelect 2, 697–701 (2017).  https://doi.org/10.1002/slct.201601608CrossRefGoogle Scholar
  142. 142.
    Yıldız, Y., Erken, E., Pamuk, H., Sert, H., Şen, F.: Monodisperse Pt nanoparticles assembled on reduced graphene oxide: highly efficient and reusable catalyst for methanol oxidation and dehydrocoupling of Dimethylamine-Borane (DMAB). J. Nanosci. Nanotechnol. 16, 5951–5958 (2016).  https://doi.org/10.1166/jnn.2016.11710CrossRefGoogle Scholar
  143. 143.
    Yıldız, Y., Esirden, İ., Erken, E., Demir, E., Kaya, M., Şen, F.: Microwave (Mw)-assisted synthesis of 5-Substituted 1H-Tetrazoles via [3 + 2] cycloaddition catalyzed by Mw-Pd/Co nanoparticles decorated on multi-walled carbon nanotubes. ChemistrySelect 1, 1695–1701 (2016).  https://doi.org/10.1002/slct.201600265CrossRefGoogle Scholar
  144. 144.
    Yıldız, Y., Kuzu, S., Sen, B., Savk, A., Akocak, S., Şen, F.: Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. Int. J. Hydrogen Energy 42, 13061–13069 (2017).  https://doi.org/10.1016/j.ijhydene.2017.03.230CrossRefGoogle Scholar
  145. 145.
    Yıldız, Y., Pamuk, H., Karatepe, Ö., Dasdelen, Z., Sen, F.: Carbon black hybrid material furnished monodisperse platinum nanoparticles as highly efficient and reusable electrocatalysts for formic acid electro-oxidation. RSC Adv. 6, 32858–32862 (2016).  https://doi.org/10.1039/C6RA00232CCrossRefGoogle Scholar
  146. 146.
    Zhang, H.B., Zheng, W.G., Yan, Q., Yang, Y., Wang, J.W., Lu, Z.H., Ji, G.Y., Yu, Z.Z.: electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer (Guildf) 51, 1191–1196 (2010).  https://doi.org/10.1016/j.polymer.2010.01.027CrossRefGoogle Scholar
  147. 147.
    Zhang, H., He, S., Chen, C., Zheng, W.Y.Q.: Electrical conductivity of melt compounded functionalized graphene sheets filled polyethyleneterephthalate composites. In: Physics and Applications of Graphene—Experiments. InTech. (2011)Google Scholar
  148. 148.
    Zhao, Y.-L., Stoddart, J.F.: Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42, 1161–1171 (2009).  https://doi.org/10.1021/ar900056zCrossRefGoogle Scholar
  149. 149.
    Zhu, Y., Stoller, M.D., Cai, W., Velamakanni, A., Piner, R.D., Chen, D., Ruoff, R.S.: Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4, 1227–1233 (2010).  https://doi.org/10.1021/nn901689kCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mehmet Gülcan
    • 1
  • Ayşenur Aygün
    • 2
  • Fatıma Almousa
    • 2
  • Hakan Burhan
    • 2
  • Anish Khan
    • 3
    • 4
  • Fatih Şen
    • 2
    Email author
  1. 1.Chemistry Department, Faculty of ScienceVan Yüzüncü Yıl UniversityVanTurkey
  2. 2.Sen Research Group, Department of BiochemistryDumlupinar UniversityKütahyaTurkey
  3. 3.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Center of Excellence for Advanced Materials ResearchKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations