Graphene-Based Nanomaterials for Hydrogen Storage

  • Ayşenur Aygün
  • Esra Atalay
  • Shukria Yassin
  • Anish Khan
  • Fatih ŞenEmail author
Part of the Carbon Nanostructures book series (CARBON)


Graphene, which was discovered in the last ten years, has attracted considerable attention in the field of material science and has been one of the most important materials. Graphene has a two-dimensional structure, and this structure gives the structural, electronic, and optical properties characteristic of the graphene. Thanks to these characteristics, many graphene-based materials have been synthesized for use in many potential applications, such as electronics, energy storage, catalysis, gas absorption, separation, and detection. The function, surface area and porosity, adjustable for energy-based materials and stable graphene are of great importance to these applications. The most important feature that makes the graphene a very useful nanoparticle is its electronic feature. Also, graphene is used as an electrode in solar cells with unprecedented transparency and conductivity. Moreover, a certain amount of graphene can store energy. In this chapter, we outline the structure, properties of graphene, and developments in energy storage systems, and graphene-based hydrogen storage systems.


Graphene Graphene oxide Synthesis Hydrogen storage Gas storage 


  1. 1.
    Abergel, D.S.L., Apalkov, V., Berashevich, J., et al.: Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261–482 (2010)CrossRefGoogle Scholar
  2. 2.
    Abrahamson, J.T., Sen, F., Sempere, B., et al.: Excess thermopower and the theory of thermopower waves. ACS Nano 7(8), 6533–6544 (2013)CrossRefGoogle Scholar
  3. 3.
    Aday, B., Pamuk, H., Kaya, M., et al.: Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1,8-dioxoacridine derivatives. J. Nanosci. Nanotechnol. 16, 6498–6504 (2016)CrossRefGoogle Scholar
  4. 4.
    Aday, B., Yildiz, Y., Ulus, R., et al.: One-pot, efficient and green synthesis of acridinedione derivatives using highly monodisperse platinum nanoparticles supported with reduced graphene oxide. New J. Chem. 40, 748–754 (2016)CrossRefGoogle Scholar
  5. 5.
    Akocak, S., Sen, B., Lolak, N., et al.: One-pot three-component synthesis of 2-amino-4H-chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Struct. Nano-Objects 11, 25–31 (2017)CrossRefGoogle Scholar
  6. 6.
    Alizadeh, T., Zare, M., Ganjali, M.R., et al.: A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens. Bioelectron. 25, 1166–1172 (2010)CrossRefGoogle Scholar
  7. 7.
    Anderson, R., McNicholas, T.P., Kleinhammes, A., et al.: NMR methods for characterizing the pore structures and hydrogen storage properties of microporous carbons. J. Am. Chem. Soc. 132, 8618 (2010)CrossRefGoogle Scholar
  8. 8.
    Ao, Z.M., Jiang, Q., Zhang, R.Q., et al.: Al doped graphene: a promising material for hydrogen storage at room temperature. J. Appl. Phys. 105, 074307 (2009)CrossRefGoogle Scholar
  9. 9.
    Ayranci, R., Baskaya, G., Guzel, M., et al.: Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: a comparative investigation. Nano-Struct. Nano-Objects 11, 13–19 (2017)CrossRefGoogle Scholar
  10. 10.
    Ayranci, R., Baskaya, G., Guzel, M., et al.: Carbon-based nanomaterials for high-performance optoelectrochemical systems. ChemistrySelect 2(4), 1548–1555 (2017)CrossRefGoogle Scholar
  11. 11.
    Balog, R., Jorgensen, B., Wells, J., et al.: Atomic hydrogen adsorbate structures on graphene. J. Am. Chem. Soc. 131, 8744–8745 (2009)CrossRefGoogle Scholar
  12. 12.
    Bai, H., Li, C., Shi, G.: Functional composite materials based on chemically converted graphene. Adv. Mater. 23, 1089–1115 (2011)CrossRefGoogle Scholar
  13. 13.
    Bai, S., Shen, X.: Graphene-inorganic nanocomposites. RSC Adv. 2, 64–98 (2012)CrossRefGoogle Scholar
  14. 14.
    Balandin, A.A., Ghosh, S., Bao, W., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRefGoogle Scholar
  15. 15.
    Baskaya, G., Esirden, I., Erken, E., et al.: Synthesis of 5-substituted-1H-tetrazole derivatives using monodisperse carbon black decorated Pt nanoparticles as heterogeneous nanocatalysts. J. Nanosci. Nanotechnol. 17, 1992–1999 (2017)CrossRefGoogle Scholar
  16. 16.
    Baskaya, G., Yıldız, Y., Savk, A., et al.: Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens. Bioelectron. 91, 728–733 (2017)CrossRefGoogle Scholar
  17. 17.
    Basu, S., Bhattacharyya, P.: Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B 173, 1–21 (2012)CrossRefGoogle Scholar
  18. 18.
    Bolotin, K.I., Sikes, K.J., Jiang, Z., et al.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)CrossRefGoogle Scholar
  19. 19.
    Bonaccorso, F., Sun, Z., Hasan, T., et al.: Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010)CrossRefGoogle Scholar
  20. 20.
    Booth, T.J., Blake, P., Nair, R.R., et al.: Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett. 8, 2442–2446 (2008)CrossRefGoogle Scholar
  21. 21.
    Bozkurt, S., Tosun, B., Sen, B., et al.: A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Anal. Chim. Acta 989C, 88–94 (2017)CrossRefGoogle Scholar
  22. 22.
    Brodie, B.C.: On the atomic weight of graphite. Philos. Trans. R Soc. 149, 249–259 (1859)CrossRefGoogle Scholar
  23. 23.
    Burress, J.W., Gadipelli, S., Ford, J., et al.: Graphene oxide framework materials: theoretical predictions and experimental results. Angew. Chem. Int. Ed. 49, 8902 (2010)CrossRefGoogle Scholar
  24. 24.
    Celik, B., Baskaya, G., Karatepe, O., et al.: Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. Int. J. Hydrogen Energy 41, 5661–5669 (2016)CrossRefGoogle Scholar
  25. 25.
    Celik, B., Erken, E., Eris, S., et al.: Highly monodisperse Pt(0)@AC NPs as highly efficient and reusable catalysts: the effect of the surfactant on their catalytic activities in room temperature dehydrocoupling of DMAB. Catal. Sci. Technol. 6, 1685–1692 (2016)CrossRefGoogle Scholar
  26. 26.
    Celik, B., Kuzu, S., Erken, E., et al.: Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation. Int. J. Hydrogen Energy 41, 3093–3101 (2016)CrossRefGoogle Scholar
  27. 27.
    Celik, B., Yildiz, Y., Erken, E., et al.: Monodisperse palladium-cobalt alloy nanoparticles assembled on poly (N-vinyl-pyrrolidone) (PVP) as highly effective catalyst for the dimethylamine borane (DMAB) dehydrocoupling. RSC Adv. 6, 24097–24102 (2016)CrossRefGoogle Scholar
  28. 28.
    Chae, H.K., Siberio-Perez, D.Y., Kim, J., et al.: A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004)CrossRefGoogle Scholar
  29. 29.
    Chen, D., Feng, H., Li, J.: Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)CrossRefGoogle Scholar
  30. 30.
    Chen, L., Hernandez, Y., Feng, X., et al.: From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51, 7640–7654 (2012)CrossRefGoogle Scholar
  31. 31.
    Chen, Y., Zhang, B., Liu, G., et al.: Graphene and its derivatives: switching ON and OFF. Chem. Soc. Rev. 41, 4688–4707 (2012)CrossRefGoogle Scholar
  32. 32.
    Choi, H.J., Jung, S.M., Seo, J.M., et al.: Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1, 534–551 (2012)CrossRefGoogle Scholar
  33. 33.
    Dai, L., Chang, D.W., Baek, J.B., et al.: Carbon nanomaterials for advanced energy conversion and storage. Small 8, 1130–1166 (2012)CrossRefGoogle Scholar
  34. 34.
    Dasdelen, Z., Yıldız, Y., Eris, S., et al.: Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybrid material for methanol oxidation reaction. Appl. Catal. B 219C, 511–516 (2017)CrossRefGoogle Scholar
  35. 35.
    Demirci, T., Celik, B., Yıldız, Y., et al.: One-pot synthesis of Hantzsch dihydropyridines using highly efficient and stable PdRuNi@GO catalyst. RSC Adv. 6, 76948–76956 (2016)CrossRefGoogle Scholar
  36. 36.
    Demir, E., Savk, A., Sen, B., et al.: A novel monodisperse metal nanoparticles anchored graphene oxide as counter electrode for dye-sensitized solar cells. Nano-Struct. Nano-Objects 12, 41–45 (2017)CrossRefGoogle Scholar
  37. 37.
    Demir, E., Sen, B., Sen, F.: Highly efficient nanoparticles and f-MWCNT nanocomposites based counter electrodes for dye-sensitized solar cells. Nano-Struct. Nano-Objects 11, 39–45 (2017)CrossRefGoogle Scholar
  38. 38.
    Dreyer, D.R., Ruoff, R.S., Bielawski, C.W.: From conception to realization: an historial account of graphene and some perspectives for its future. Angew. Chem. Int. Ed. 51, 7640–7654 (2012)CrossRefGoogle Scholar
  39. 39.
    Dong, L.X., Chen, Q.: Properties, synthesis, and characterization of graphene. Front. Mater. Sci. China 4, 45–51 (2010)CrossRefGoogle Scholar
  40. 40.
    Du, X., Skachko, I., Barker, A., et al.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008)CrossRefGoogle Scholar
  41. 41.
    Eda, G., Chhowalla, M.: Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010)CrossRefGoogle Scholar
  42. 42.
    Erken, E., Esirden, I., Kaya, M., et al.: A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation. RSC Adv. 5, 68558–68564 (2015)CrossRefGoogle Scholar
  43. 43.
    Erken, E., Pamuk, H., Karatepe, O., et al.: New Pt(0) nanoparticles as highly active and reusable catalysts in the C1–C3 alcohol oxidation and the room temperature dehydrocoupling of dimethylamine-borane (DMAB). J. Cluster Sci. 27, 9–23 (2016)CrossRefGoogle Scholar
  44. 44.
    Erken, E., Yildiz, Y., Kilbas, B., et al.: Synthesis and characterization of nearly monodisperse Pt nanoparticles for C1 to C3 alcohol oxidation and dehydrogenation of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol. 16, 5944–5950 (2016)CrossRefGoogle Scholar
  45. 45.
    Eris, S., Dasdelen, Z., Sen, F., et al.: Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for Methanol electrooxidation. Int. J. Hydrogen Energy 43(1), 385–390 (2018)CrossRefGoogle Scholar
  46. 46.
    Eris, S., Dasdelen, Z., Sen, F.: Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells. J. Colloid Interface Sci. 513, 767–773 (2018)CrossRefGoogle Scholar
  47. 47.
    Eris, S., Dasdelen, Z., Yildiz, Y., et al.: Nanostructured polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for methanol oxidation. Int. J. Hydrogen Energy 43(3), 1337–1343 (2018)CrossRefGoogle Scholar
  48. 48.
    Esirden, I., Erken, E., Kaya, M., et al.: Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazole derivatives. Catal. Sci. Technol. 5, 4452–4457 (2015)CrossRefGoogle Scholar
  49. 49.
    Fuel Cell Technologies Office Department of Energy: A Multiyear Plan for the Hydrogen R&D Program. (1999)
  50. 50.
    Gadipelli, S., Guo, Z.X.: Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 69, 1–60 (2015)CrossRefGoogle Scholar
  51. 51.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  52. 52.
    Georgakilas, V., Otyepka, M., Bourlinos, A.B., et al.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012)CrossRefGoogle Scholar
  53. 53.
    Giraldo, J.P., Landry, M.P., Faltermeier, S.M., et al.: A nanobionic approach to augment plant photosynthesis and biochemical sensing using targeted nanoparticles. Nat. Mater. 13, 400–408 (2014)CrossRefGoogle Scholar
  54. 54.
    Goksu, H., Celik, B., Yildiz, Y., et al.: Superior monodisperse CNT-supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in an aqueous medium. ChemistrySelect 1(10), 2366–2372 (2016)CrossRefGoogle Scholar
  55. 55.
    Goksu, H., Kilbas, B., Sen, F.: Recent advances in the reduction of nitro compounds by heterogenous catalysts. Curr. Org. Chem. 21(9), 794–820 (2017)CrossRefGoogle Scholar
  56. 56.
    Goksu, H., Yildiz, Y., Celik, B., et al.: Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of reduced graphene oxide furnished platinum nanocatalyst. Catal. Sci. Technol. 6, 2318–2324 (2016)CrossRefGoogle Scholar
  57. 57.
    Goksu, H., Yildiz, Y., Celik, B., et al.: Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. ChemistrySelect 1(5), 953–958 (2016)CrossRefGoogle Scholar
  58. 58.
    Goksu, H., Zengin, N., Karaosman, N., et al.: Highly active and reusable Pd/AlO(OH) nanoparticles for the Suzuki cross-coupling reaction. Curr. Organocatal. 5, 1–8 (2018)CrossRefGoogle Scholar
  59. 59.
    Gulcin, I., Taslimi, P., Aygün, A., et al.: Antidiabetic and antiparasitic potentials: inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. Int. J. Biol. Macromol. 119, 741–746 (2018)CrossRefGoogle Scholar
  60. 60.
    Gunbatar, S., Aygun, A., Karataş, Y., et al.: Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature. J. Colloid Interface Sci. (2018). Scholar
  61. 61.
    Hou, J., Yang, C., Cheng, H., et al.: Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production. Phys. Chem. Chem. Phys. 15, 15660 (2013)CrossRefGoogle Scholar
  62. 62.
    Huang, X., Qi, X., Boey, F., et al.: Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)CrossRefGoogle Scholar
  63. 63.
    Huang, X., Yin, Z., Wu, S., et al.: Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)CrossRefGoogle Scholar
  64. 64.
    Huang, X., Zeng, Z., Fan, Z., et al.: Graphene-based electrodes. Adv. Mater. 24, 5979–6004 (2012)CrossRefGoogle Scholar
  65. 65.
    Iverson, N.M., Barone, P.W., Sen, F., et al.: In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 11, 873–880 (2013)CrossRefGoogle Scholar
  66. 66.
    Jiang, Z., Henriksen, E., Tung, L., et al.: Infrared spectroscopy of Landau levels of graphene. Phys. Rev. Lett. 98, 197403 (2007)CrossRefGoogle Scholar
  67. 67.
    Jiao, L., Zhang, L., Wang, X., et al.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)CrossRefGoogle Scholar
  68. 68.
    Karatepe, O., Yildiz, Y., Pamuk, H., et al.: Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy-PANI nanocomposites as a novel catalyst for electro-oxidation of methanol. RSC Adv. 6, 50851–50857 (2016)CrossRefGoogle Scholar
  69. 69.
    Kim, G., Jhi, S.H., Park, N., et al.: Optimization of metal dispersion in doped graphitic materials for hydrogen storage. Phys. Rev. B: Condens. Matter 78, 085408 (2008)CrossRefGoogle Scholar
  70. 70.
    Kim, K., Choi, J.Y., Kim, T., et al.: A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011)CrossRefGoogle Scholar
  71. 71.
    Koskun, Y., Şavk, A., Şen, B., et al.: Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal. Chim. Acta 1010, 37–43 (2018)CrossRefGoogle Scholar
  72. 72.
    Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., et al.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)CrossRefGoogle Scholar
  73. 73.
    Kuila, T., Bose, S., Mishra, A.K., et al.: Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57, 1061–1105 (2012)CrossRefGoogle Scholar
  74. 74.
    Kwon, S.Y., Ciobanu, C.V., Petrova, V., et al.: Growth of semiconducting graphene on palladium. Nano Lett. 9, 3985–3990 (2009)CrossRefGoogle Scholar
  75. 75.
    Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRefGoogle Scholar
  76. 76.
    Li, J.R., Kuppler, R.J., Zhou, H.C.: Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)CrossRefGoogle Scholar
  77. 77.
    Liu, J., Cao, G., Yang, Z., et al.: Oriented nanostructures for energy conversion and storage. Chemsuschem 1, 676–697 (2008)CrossRefGoogle Scholar
  78. 78.
    Liu, C., Li, F., Ma, L.P., Cheng, H.M.: Advanced materials for energy storage. Adv. Mater. 22, E28–E62 (2010)CrossRefGoogle Scholar
  79. 79.
    Lueking, A.D., Gutierrez, H.R., Fenseca, D.A., et al.: Combined hydrogen production and storage with subsequent carbon crystallization. J. Am. Chem. Soc. 128, 7758 (2006)CrossRefGoogle Scholar
  80. 80.
    Luo, B., Liu, S., Zhi, L.: Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 8, 630–646 (2012)CrossRefGoogle Scholar
  81. 81.
    Machado, B.F., Serp, P.: Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012)CrossRefGoogle Scholar
  82. 82.
    Malig, J., Jux, N., Guldi, D.M.: Toward multifunctional wet chemically functionalized graphene-integration of oligomeric, molecular, and particulate building blocks that reveal photoactivity and redox activity. Acc. Chem. Res. 46, 53–64 (2013)CrossRefGoogle Scholar
  83. 83.
    Mao, S., Pu, H., Chen, J.: Graphene oxide and its reduction: modeling and experimental progress. RSC Adv. 2, 2643–2662 (2012)CrossRefGoogle Scholar
  84. 84.
    Neto, A.H.C., Guinea, F., Peres, N., et al.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)CrossRefGoogle Scholar
  85. 85.
    Novoselov, K.S., Falko, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490, 192–200 (2012)CrossRefGoogle Scholar
  86. 86.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  87. 87.
    Novoselov, K.S., Geim, A., Morozov, S.V., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)CrossRefGoogle Scholar
  88. 88.
    Pamuk, H., Aday, B., Kaya, M., et al.: Pt Nps@GO as highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives. RSC Adv. 5, 49295–49300 (2015)CrossRefGoogle Scholar
  89. 89.
    Park, C., Anderson, P.E., Chambers, A., et al.: Further studies of the interaction of hydrogen with graphite nanofibers. J. Phys. Chem. B 103, 10572–10581 (1999)CrossRefGoogle Scholar
  90. 90.
    Patchkovskii, S., Tse, J.S., Yurchenko, S.N., et al.: Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. USA 102, 10439–10444 (2005)CrossRefGoogle Scholar
  91. 91.
    Pierson, H.O.: Handbook of Carbon, Graphite, Diamond and Fullerenes. New Jersey (1993)Google Scholar
  92. 92.
    Pumera, M.: Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Langmuir 23, 6453–6458 (2007)CrossRefGoogle Scholar
  93. 93.
    Pumera, M.: The electrochemistry of carbon nanotubes: fundamentals and applications. Chem. Eur. J. 15, 4970–4978 (2009)CrossRefGoogle Scholar
  94. 94.
    Pumera, M.: Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2011)CrossRefGoogle Scholar
  95. 95.
    Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7757 (2009)CrossRefGoogle Scholar
  96. 96.
    Rozhkov, A.V., Giavaras, G., Bliokh, Y.P., et al.: Electronic properties of mesoscopic graphene structures: charge confinement and control of spin and charge transport. Phys. Rep. 503, 77–114 (2011)CrossRefGoogle Scholar
  97. 97.
    Sahin, B., Aygun, A., Gunduz, H., et al.: Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf. B 163, 119–124 (2018)CrossRefGoogle Scholar
  98. 98.
    Sahin, B., Demir, E., Aygun, A., et al.: Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line. J. Biotechnol. 260C, 79–83 (2017)CrossRefGoogle Scholar
  99. 99.
    Sahoo, N.G., Pan, Y., Li, L., et al.: Graphene-based materials for energy conversion. Adv. Mater. 24, 4203–4210 (2012)CrossRefGoogle Scholar
  100. 100.
    Sarma, S.D., Adam, S., Hwang, E.H., et al.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)CrossRefGoogle Scholar
  101. 101.
    Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010)CrossRefGoogle Scholar
  102. 102.
    Sen, B., Akdere, E.H., Savk, A., et al.: A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile. Appl. Catal. B 225(5), 148–153 (2018)CrossRefGoogle Scholar
  103. 103.
    Sen, B., Aygün, A., Onal Okyay, T., et al.: Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane. Int. J. Hydrogen Energy (2018). Scholar
  104. 104.
    Sen, B., Demirkan, B., Levent, M., et al.: Silica-based monodisperse PdCo nanohybrids as highly efficient and stable nanocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy (2018). Scholar
  105. 105.
    Sen, B., Demirkan, B., Savk, A., et al.: Trimetallic PdRuNi nanocomposites decorated on graphene oxide: a superior catalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 17984–17992 (2018)CrossRefGoogle Scholar
  106. 106.
    Sen, B., Demirkan, B., Simsek, B., et al.: Monodisperse palladium nanocatalysts for dehydrocoupling of dimethylamineborane. Nano-Struct. Nano-Objects 16, 209–214 (2018)CrossRefGoogle Scholar
  107. 107.
    Sen, B., Kuyuldar, E., Demirkan, B., et al.: Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane. J. Colloid Interface Sci. 526, 480–486 (2018)CrossRefGoogle Scholar
  108. 108.
    Sen, B., Kuzu, S., Demir, E., et al.: Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium-nickel alloy nanoparticles assembled on PEDOT. Int. J. Hydrogen Energy 42(36), 23307–23314 (2017)CrossRefGoogle Scholar
  109. 109.
    Sen, B., Kuzu, S., Demir, E., et al.: Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of dimethylamine borane. Int. J. Hydrogen Energy 42(36), 23292–23298 (2017)CrossRefGoogle Scholar
  110. 110.
    Sen, B., Kuzu, S., Demir, E., et al.: Hydrogen liberation from the dehydrocoupling of dimethylamine-borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide. Int. J. Hydrogen Energy 42(36), 23299–23306 (2017)CrossRefGoogle Scholar
  111. 111.
    Sen, B., Kuzu, S., Demir, E., et al.: Monodisperse palladium-nickel alloy nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane. Int. J. Hydrogen Energy 42(36), 23276–23283 (2017)CrossRefGoogle Scholar
  112. 112.
    Sen, B., Kuzu, S., Demir, E., et al.: Polymer-graphene hybrid decorated Pt nanoparticles as highly efficient and reusable catalyst for the dehydrogenation of dimethylamine-borane at room temperature. Int. J. Hydrogen Energy 42(36), 23284–23291 (2017)CrossRefGoogle Scholar
  113. 113.
    Sen, B., Lolak, N., Paralı, O., et al.: Bimetallic PdRu/graphene oxide based catalysts for the one-pot three-component synthesis of 2-amino-4H-chromene derivatives. Nano-Struct. Nano-Objects 12, 33–40 (2017)CrossRefGoogle Scholar
  114. 114.
    Sen, B., Savk, A., Kuyuldar, E., et al.: Hydrogen liberation from the hydrolytic dehydrogenation of hydrazine borane in acidic media. Int. J. Hydrogen Energy 43, 17978–17983 (2018)CrossRefGoogle Scholar
  115. 115.
    Sen, B., Savk, A., Sen, F.: Highly efficient monodisperse nanoparticles confined in the carbon black hybrid material for hydrogen liberation. J. Colloid Interface Sci. 520, 112–118 (2018)CrossRefGoogle Scholar
  116. 116.
    Sen, F., Boghossian, A.A., Sen, S., et al.: Observation of oscillatory surface reactions of riboflavin, trolox, and singlet oxygen using single carbon nanotube fluorescence spectroscopy. ACS Nano 6(12), 10632–10645 (2012)CrossRefGoogle Scholar
  117. 117.
    Sen, F., Boghossian, A.A., Sen, S., et al.: Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv. Energy Mater. 3(7), 881–893 (2013)CrossRefGoogle Scholar
  118. 118.
    Sen, F., Gokagac, G.: Different sized platinum nanoparticles supported on carbon: an XPS study on these methanol oxidation catalysts. J. Phys. Chem. C 111, 5715–5720 (2007)CrossRefGoogle Scholar
  119. 119.
    Sen, F., Gokagac, G., et al.: The activity of carbon supported platinum nanoparticles towards methanol oxidation reaction—the role of the metal precursor and a new surfactant, tert-octanethiol. J. Phys. Chem. C 111, 1467–1473 (2007)CrossRefGoogle Scholar
  120. 120.
    Sen, F., Gokagac, G.: Improving catalytic efficiency in the methanol oxidation reaction by inserting Ru in face-centered cubic Pt nanoparticles prepared by a new surfactant, tert-octanethiol. Energy Fuels 22(3), 1858–1864 (2008)CrossRefGoogle Scholar
  121. 121.
    Sen, F., Gokagac, G.: Pt nanoparticles synthesized with new surfactants: improvement in C1–C3 alcohol oxidation catalytic activity. J. Appl. Electrochem. 44(1), 199–207 (2014)CrossRefGoogle Scholar
  122. 122.
    Sen, F., Ertan, S., Sen, S., et al.: Platinum nanocatalysts prepared with different surfactants for C1 to C3 alcohol oxidations and their surface morphologies by AFM. J. Nanopart. Res. 14, 922–926 (2012)CrossRefGoogle Scholar
  123. 123.
    Sen, F., Karatas, Y., Gülcan, M., et al.: Amylamine stabilized platinum (0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane. RSC Adv. 4(4), 1526–1531 (2014)CrossRefGoogle Scholar
  124. 124.
    Sen, F., Ozturk, Z., Sen, S., et al.: The preparation and characterization of nano-sized Pt-Pd alloy catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. J. Mater. Sci. 47, 8134–8144 (2012)CrossRefGoogle Scholar
  125. 125.
    Sen, S., Sen, F., Boghossian, A.A., et al.: The effect of reductive dithiothreitol and trolox on nitric oxide quenching of single-walled carbon nanotubes. J. Phys. Chem. C 117(1), 593–602 (2013)CrossRefGoogle Scholar
  126. 126.
    Sen, F., Sen, S., Gokagac, G., et al.: Efficiency enhancement in the methanol/ethanol oxidation reactions on Pt nanoparticles prepared by a new surfactant, 1,1-dimethyl heptanethiol, and surface morphology by AFM. Phys. Chem. Chem. Phys. 13, 1676–1684 (2011)CrossRefGoogle Scholar
  127. 127.
    Sen, S., Sen, F., Gokagac, G.: Preparation and characterization of nano-sized Pt–Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation. Phys. Chem. Chem. Phys. 13, 6784–6792 (2011)CrossRefGoogle Scholar
  128. 128.
    Sen, F., Sen, S., Gokagac, G.: High-performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions. J. Nanopart. Res. 15, 1979 (2013)CrossRefGoogle Scholar
  129. 129.
    Sen, F., Ulissi, Z.W., Gong, X., et al.: Spatiotemporal intracellular nitric oxide signaling captured using internalized, near-infrared fluorescent carbon nanotube nanosensors. Nano Lett. 14(8), 4887–4894 (2014)CrossRefGoogle Scholar
  130. 130.
    Shang, N.G., Papakonstantinou, P., McMullan, M., et al.: Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18, 3506–3514 (2008)CrossRefGoogle Scholar
  131. 131.
    Shao, Y., Wang, J., Wu, H., et al.: Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027–1036 (2010)CrossRefGoogle Scholar
  132. 132.
    Singh, V., Joung, D., Zhai, L., et al.: Graphene based materials: past, present and future. Prog. Mater Sci. 56, 1178–1271 (2011)CrossRefGoogle Scholar
  133. 133.
    Slonczewski, J.C., Weiss, P.R.: Band structure of graphite. Phys. Rev. 109, 272 (1958)CrossRefGoogle Scholar
  134. 134.
    Soldano, C., Mahmood, A., Dujardin, E.: Production, properties and potential of graphene. Carbon 48, 2127–2150 (2010)CrossRefGoogle Scholar
  135. 135.
    Soodchomshom, B.: Switching effect in a gapped graphene d-wave superconductor structure. Phys. B 405, 1383–1387 (2010)CrossRefGoogle Scholar
  136. 136.
    Sun, Z., James, D.K., Tour, J.M.: Graphene chemistry: synthesis and manipulation. J. Phys. Chem. Lett. 2, 2425–2432 (2011)CrossRefGoogle Scholar
  137. 137.
    Stoller, M.D., Park, S., Zhu, Y., et al.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)CrossRefGoogle Scholar
  138. 138.
    Thayer, A.M.: Anticipating new commercial applications, producers increase capacity. Chem. Eng. News 85, 29–35 (2007)CrossRefGoogle Scholar
  139. 139.
    Terrones, M., Botello-Mendez, A.R., Campos-Delgado, J., et al.: Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5, 351–372 (2010)CrossRefGoogle Scholar
  140. 140.
    Wang, H., et al.: Three dimensional graphene based materials: synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Adv. Colloid Interface. Sci. 221, 41–59 (2015)CrossRefGoogle Scholar
  141. 141.
    Wang, H., Maiyalagan, T., Wang, X.: Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2, 781–794 (2012)CrossRefGoogle Scholar
  142. 142.
    Wang, L., Lee, K., Sun, Y.Y., et al.: Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3, 2995–3000 (2009)CrossRefGoogle Scholar
  143. 143.
    Wang, Y., Wang, K., Guan, C., et al.: Surface functionalization-enhanced spillover effect on hydrogen storage of Ni–B nanoalloy-doped activated carbon. Int. J. Hydrogen Energy 36, 13663–13668 (2011)CrossRefGoogle Scholar
  144. 144.
    Wei, D., Liu, Y.: Controllable synthesis of graphene and its applications. Adv. Mater. 22, 3225–3241 (2010)CrossRefGoogle Scholar
  145. 145.
    Wei, W., Qu, X.: Extraordinary physical properties of functionalized graphene. Small 8, 2138–2151 (2012)CrossRefGoogle Scholar
  146. 146.
    Weiss, N.O., Zhou, H., Liao, L., et al.: Graphene: an emerging electronic material. Adv. Mater. 24, 5782–5825 (2012)CrossRefGoogle Scholar
  147. 147.
    Wu, C.D., Fang, T.H., Lo, J.Y.: Effects of pressure, temperature, and geometric structure of pillared graphene on hydrogen storage capacity. Int. J. Hydrogen Energy 37, 14211–14216 (2012)CrossRefGoogle Scholar
  148. 148.
    Xiang, Q., Yu, J., Jaroniec, M.: Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782–796 (2012)CrossRefGoogle Scholar
  149. 149.
    Xu, C., Xu, B., Gu, Y., et al.: Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6, 1388 (2013)CrossRefGoogle Scholar
  150. 150.
    Yao, J., Sun, Y., Yang, M., Duan, Y.: Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J. Mater. Chem. 22, 14313–14329 (2012)CrossRefGoogle Scholar
  151. 151.
    Yavari, F., Koratkar, N.: Graphene-based chemical sensors. J. Phys. Chem. Lett. 3, 1746–1753 (2012)CrossRefGoogle Scholar
  152. 152.
    Yildiz, Y., Erken, E., Pamuk, H., et al.: Monodisperse Pt nanoparticles assembled on reduced graphene oxide: highly efficient and reusable catalyst for methanol oxidation and dehydrocoupling of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol. 16, 5951–5958 (2016)CrossRefGoogle Scholar
  153. 153.
    Yildiz, Y., Esirden, I., Erken, E., et al.: Microwave (Mw)-assisted synthesis of 5-substituted 1H-tetrazoles via [3 + 2] cycloaddition catalyzed by Mw-Pd/Co nanoparticles decorated on multi-walled carbon nanotubes. ChemistrySelect 1(8), 1695–1701 (2016)CrossRefGoogle Scholar
  154. 154.
    Yildiz, Y., Kuzu, S., Sen, B., et al.: Different ligand based monodispersed metal nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. Int. J. Hydrogen Energy 42(18), 13061–13069 (2017)CrossRefGoogle Scholar
  155. 155.
    Yildiz, Y., Okyay, T.O., Gezer, B., et al.: Monodisperse Mw-Pt NPs@VC as highly efficient and reusable adsorbents for methylene blue removal. J. Cluster Sci. 27, 1953–1962 (2016)CrossRefGoogle Scholar
  156. 156.
    Yildiz, Y., Okyay, T.O., Sen, B., et al.: Activated carbon furnished monodisperse Pt nanocomposites as a superior adsorbent for methylene blue removal from aqueous solutions. J. Nanosci. Nanotechnol. 17, 4799–4804 (2017)CrossRefGoogle Scholar
  157. 157.
    Yildiz, Y., Okyay, T.O., Sen, B., et al.: Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. ChemistrySelect 2(2), 697–701 (2017)CrossRefGoogle Scholar
  158. 158.
    Yildiz, Y., Pamuk, H., Karatepe, O., et al.: Carbon black hybrid material furnished monodisperse platinum nanoparticles as highly efficient and reusable electrocatalysts for formic acid electro-oxidation. RSC Adv. 6, 32858–32862 (2016)CrossRefGoogle Scholar
  159. 159.
    Yildiz, Y., Ulus, R., Eris, S., et al.: Functionalized multi-walled carbon nanotubes (f-MWCNT) as highly efficient and reusable heterogeneous catalysts for the synthesis of acridinedione derivatives. ChemistrySelect 1(13), 3861–3865 (2016)CrossRefGoogle Scholar
  160. 160.
    Yildirim, T., Ciraci, S.: Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys. Rev. Lett. 94, 175501 (2005)CrossRefGoogle Scholar
  161. 161.
    Yu, A., Ramesh, P., Itkis, M.E., et al.: Graphite nanoplatelet–epoxy composite thermal interface materials. J. Phys. Chem. C 111, 7565–7569 (2007)CrossRefGoogle Scholar
  162. 162.
    Zhang, Y., Zhang, L., Zhou, C.: Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329–2339 (2013)CrossRefGoogle Scholar
  163. 163.
    Zhang, N., Zhang, Y., Xu, Y.J.: Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4, 5792–5813 (2012)CrossRefGoogle Scholar
  164. 164.
    Zhao, G., Wen, T., Chen, C., et al.: Synthesis of graphene-based nanomaterials and their application in energy related and environmental-related areas. RSC Adv. 2, 9286–9303 (2012)CrossRefGoogle Scholar
  165. 165.
    Zhou, Y.G., Zu, X.T., Gao, F., et al.: Adsorption of hydrogen on boron-doped graphene: a first-principles prediction. J. Appl. Phys. 105, 014309 (2009)CrossRefGoogle Scholar
  166. 166.
    Zhu, Y., Murali, S., Cai, W., et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)CrossRefGoogle Scholar
  167. 167.
    Zhu, Y., James, D.K., Tour, J.M.: New routes to graphene, graphene oxide and their related applications. Adv. Mater. 24, 4924–4955 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ayşenur Aygün
    • 1
  • Esra Atalay
    • 1
  • Shukria Yassin
    • 1
  • Anish Khan
    • 2
    • 3
  • Fatih Şen
    • 1
    Email author
  1. 1.Sen Research Group, Department of BiochemistryDumlupınar UniversityKütahyaTurkey
  2. 2.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Center of Excellence for Advanced Materials ResearchKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations