Advertisement

Origin of Mycotoxin-Producing Fungal Species

  • Dianzhen Yu
  • Jianhua Wang
  • Yan Tang
  • Dongqiang Hu
  • Aibo WuEmail author
Chapter

Abstract

Mycotoxins are certainly recognized as secondary metabolites by the fungal pathogens after invasion into the host plants, which are toxic or harmful to plants, animals and human beings. To trace back to the origin of mycotoxin contamination, the fungal pathogens are surely the targets and also the source of mycotoxin synthesis there, except for the hosts. Actually the types of produced mycotoxin are basically and genetically determined by the pathogenic microbes. Due to the expertise or more familiar characteristics, this chapter will cover more about Fusarium and Alternaria species, trying to elucidate their contribution to the network of mycotoxin biosynthesis. This would be very helpful to unveil molecular regulation mechanisms from the origins and control of mycotoxin contaminants from the basic components.

Keywords

Mycotoxin-producing fungi Fusarium Alternaria Mycotoxins 

References

  1. Ahuja M, Chiang YM, Chang SL, Praseuth MB, Entwistle R, Sanchez JF, Lo HC, Yeh HH, Oakley BR, Wang CC (2012) Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans. J Am Chem Soc 134(19):8212–8221CrossRefGoogle Scholar
  2. Aoki T, Tanaka F, Suga H, Hyakumachi M, Scandiani MM, O’Donnell K (2012) Fusarium azukicola sp nov., an exotic azuki bean root-rot pathogen in Hokkaido, Japan. Mycologia 104(5):1068–1084.  https://doi.org/10.3852/11-303CrossRefPubMedGoogle Scholar
  3. Broekaert N, Devreese M, De Mil T, Fraeyman S, Antonissen G, De Baere S, De Backer P, Vermeulen A, Croubels S (2015) Oral bioavailability, hydrolysis, and comparative toxicokinetics of 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol in broiler chickens and pigs. J Agr Food Chem 63(39):8734–8742.  https://doi.org/10.1021/acs.jafc.5b03270CrossRefGoogle Scholar
  4. Broekaert N, Devreese M, van Bergen T, Schauvliege S, De Boevre M, De Saeger S, Vanhaecke L, Berthiller F, Michlmayr H, Malachova A, Adam G, Vermeulen A, Croubels S (2017) In vivo contribution of deoxynivalenol-3-beta-D-glucoside to deoxynivalenol exposure in broiler chickens and pigs: oral bioavailability, hydrolysis and toxicokinetics. Arch Toxicol 91(2):699–712.  https://doi.org/10.1007/s00204-016-1710-2CrossRefPubMedGoogle Scholar
  5. Dahl B, Wilson WW (2018) Risk premiums due to Fusarium Head Blight (FHB) in wheat and barley. Agric Syst 162:145–153.  https://doi.org/10.1016/j.agsy.2018.01.025CrossRefGoogle Scholar
  6. de Kuppler ALM, Steiner U, Sulyok M, Krska R, Oerke EC (2011) Genotyping and phenotyping of Fusarium graminearum isolates from Germany related to their mycotoxin biosynthesis. Int J Food Microbiol 151(1):78–86.  https://doi.org/10.1016/j.ijfoodmicro.2011.08.006CrossRefPubMedGoogle Scholar
  7. Duan CX, Qin ZH, Yang ZH, Li WX, Sun SL, Zhu ZD, Wang XM (2016) Identification of pathogenic Fusarium spp. causing maize ear rot and potential mycotoxin production in China. Toxins 8(6).  https://doi.org/10.3390/toxins8060186CrossRefGoogle Scholar
  8. Duan YB, Xiao XM, Li T, Chen WW, Wang JX, Fraaije BA, Zhou MG (2018) Impact of epoxiconazole on Fusarium head blight control, grain yield and deoxynivalenol accumulation in wheat. Pestic Biochem Physiol 152:138–147.  https://doi.org/10.1016/j.pestbp.2018.09.012CrossRefPubMedGoogle Scholar
  9. Eriksen GS, Pettersson H, Lundh T (2004) Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. Food Chem Toxicol 42(4):619–624.  https://doi.org/10.1016/j.fct.2003.11.006CrossRefGoogle Scholar
  10. Kelly AC, Clear RM, O’Donnell K, McCormick S, Turkington TK, Tekauz A, Gilbert J, Kistler HC, Busman M, Ward TJ (2015) Diversity of Fusarium head blight populations and trichothecene toxin types reveals regional differences in pathogen composition and temporal dynamics. Fungal Genet Biol 82:22–31.  https://doi.org/10.1016/j.fgb.2015.05.016CrossRefPubMedGoogle Scholar
  11. Kuhn DM, Ghannoum MA (2003) Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin Microbiol Rev 16(1):144–172.  https://doi.org/10.1128/cmr.16.1.144-172.2003CrossRefPubMedPubMedCentralGoogle Scholar
  12. Liu YY, Sun HY, Li W, Xia YL, Deng YY, Zhang AX, Chen HG (2017) Fitness of three chemotypes of Fusarium graminearum species complex in major winter wheat-producing areas of China. PLoS One 12(3):e0174040.  https://doi.org/10.1371/journal.pone.0174040CrossRefPubMedPubMedCentralGoogle Scholar
  13. Minervini F, Fornelli F, Flynn KM (2004) Toxicity and apoptosis induced by the mycotoxins nivalenol, deoxynivalenol and fumonisin B-1 in a human erythroleukemia cell line. Toxicol In Vitro 18(1):21–28.  https://doi.org/10.1016/s0887-2333(03)00130-9CrossRefPubMedGoogle Scholar
  14. Nicolli CP, Machado FJ, Spolti P, Del Ponte EM (2018) Fitness traits of deoxynivalenol and nivalenol-producing Fusarium graminearum species complex strains from wheat. Plant Dis 102(7):1341–1347.  https://doi.org/10.1094/pdis-12-17-1943-reCrossRefPubMedGoogle Scholar
  15. Nielsen LK, Jensen JD, Rodriguez A, Jorgensen LN, Justesen AF (2012) TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals. Int J Food Microbiol 157(3):384–392.  https://doi.org/10.1016/j.ijfoodmicro.2012.06.010CrossRefPubMedGoogle Scholar
  16. Nobis A, Rohrig A, Hellwig M, Henle T, Becker T, Gastl M (2019) Formation of 3-deoxyglucosone in the malting process. Food Chem 290:187–195.  https://doi.org/10.1016/j.foodchem.2019.03.144CrossRefPubMedGoogle Scholar
  17. O’Donnell K (2000) Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92(5):919–938.  https://doi.org/10.2307/3761588CrossRefGoogle Scholar
  18. Pasquali M, Giraud F, Brochot C, Cocco E, Hoffmann L, Bohn T (2010) Genetic Fusarium chemotyping as a useful tool for predicting nivalenol contamination in winter wheat. Int J Food Microbiol 137(2–3):246–253.  https://doi.org/10.1016/j.ijfoodmicro.2009.11.009CrossRefPubMedGoogle Scholar
  19. Pestka JJ, Smolinski AT (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health-Pt b-Crit Rev 8(1):39–69.  https://doi.org/10.1080/10937400590889458CrossRefGoogle Scholar
  20. Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glossl J, Luschnig C, Adam G (2003) Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem 278(48):47905–47914.  https://doi.org/10.1074/jbc.M307552200CrossRefPubMedGoogle Scholar
  21. Raistrick H, Stickings CE, Thomas R (1953) Studies in the biochemistry of microorganisms. 90. Alternariol and alternariol monomethyl ether, metabolic products of Alternaria tenuis. Biochem J 55(3):421–433PubMedPubMedCentralGoogle Scholar
  22. Reynoso MM, Ramirez ML, Torres AM, Chulze SN (2011) Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina. Int J Food Microbiol 145(2–3):444–448.  https://doi.org/10.1016/j.ijfoodmicro.2011.01.020CrossRefPubMedGoogle Scholar
  23. Sarver BAJ, Ward TJ, Gale LR, Broz K, Kistler HC, Aoki T, Nicholson P, Carter J, O’Donnell K (2011) Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet Biol 48(12):1096–1107.  https://doi.org/10.1016/j.fgb.2011.09.002CrossRefPubMedGoogle Scholar
  24. Shimada T, Otani M (1990) Effects of Fusarium mycotoxins on the growth of shoots and roots at germination in some Japanese wheat cultivars. Cereal Res Commun 18(3):229–232Google Scholar
  25. Stickings CE (1959) Studies in the biochemistry of micro-organisms. 106. Metabolites of Alternaria tenuis auct.: the structure of tenuazonic acid. Biochem J 72(2):332–340PubMedPubMedCentralGoogle Scholar
  26. Varga E, Wiesenberger G, Hametner C, Ward TJ, Dong Y, Schoefbeck D, McCormick S, Broz K, Stueckler R, Schuhmacher R, Krska R, Kistler HC, Berthiller F, Adam G (2015) New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environ Microbiol 17(8):2588–2600.  https://doi.org/10.1111/1462-2920.12718CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ward TJ, Clear RM, Rooney AP, O’Donnell K, Gaba D, Patrick S, Starkey DE, Gilbert J, Geiser DM, Nowicki TW (2008) An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol 45(4):473–484.  https://doi.org/10.1016/j.fgb.2007.10.003CrossRefPubMedGoogle Scholar
  28. Warth B, Fruhmann P, Wiesenberger G, Kluger B, Sarkanj B, Lemmens M, Hametner C, Frohlich J, Adam G, Krska R, Schuhmacher R (2015) Deoxynivalenol-sulfates: identification and quantification of novel conjugated (masked) mycotoxins in wheat. Anal Bioanal Chem 407(4):1033–1039.  https://doi.org/10.1007/s00216-014-8340-4CrossRefPubMedGoogle Scholar
  29. Wenderoth M, Garganese F, Schmidt-Heydt M, Tobias SS, Ippolito A, Sanzani SM, Fischer R (2019) Alternariol as virulence and colonization factor of Alternaria alternata during plant infection. Mol Microbiol 112(1):131–146CrossRefGoogle Scholar
  30. Wu QH, Dohnal V, Huang LL, Kuca K, Yuan ZH (2010) Metabolic pathways of trichothecenes. Drug Metab Rev 42(2):250–267.  https://doi.org/10.3109/03602530903125807CrossRefPubMedGoogle Scholar
  31. Yun CS, Motoyama T, Osada H (2015) Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme. Nat Commun 6:8758CrossRefGoogle Scholar
  32. Zhang H, Van der Lee T, Waalwijk C, Chen WQ, Xu J, Xu JS, Zhang Y, Feng J (2012) Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS One 7(2).  https://doi.org/10.1371/journal.pone.0031722CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dianzhen Yu
    • 1
  • Jianhua Wang
    • 2
  • Yan Tang
    • 1
  • Dongqiang Hu
    • 1
  • Aibo Wu
    • 1
    Email author
  1. 1.CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiPeople’s Republic of China
  2. 2.Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural SciencesShanghaiPeople’s Republic of China

Personalised recommendations