Toxicity Evaluation Using Animal and Cell Models

  • Yunxia Yang
  • Wenda WuEmail author
  • Aibo WuEmail author


Toxicology is a science that studies various physical and chemical and biological harmful factors, which especially on human beings. The main task is to evaluate the possible health hazards of exogenous chemicals to the contactors and ultimately to provide the basis for controlling the hazards of chemical substances and strengthening the management of chemical substances. Toxicology plays an important role in safeguarding human health, maintaining ecological balance, and improving the environment through hazard assessment of exogenous chemicals. In this chapter, we discussed the current and future plans for the toxicity evaluation using classic and new strategies in vivo and in vitro model for toxicological evaluation of specific mycotoxin contaminants arousing food safety issues.


Toxicology Toxicity assessment Methods In vivo models In vitro models 


  1. Abid-Essefi S et al (2003) DNA fragmentation, apoptosis and cell cycle arrest induced by zearalenone in cultured DOK, Vero and Caco-2 cells: prevention by vitamin E. Toxicology 192:237–248PubMedCrossRefPubMedCentralGoogle Scholar
  2. Akbari P et al (2017) The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Arch Toxicol 91:1007–1029PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alam A, Neish A (2018) Role of gut microbiota in intestinal wound healing and barrier function. Tissue Barriers 6:1539595PubMedPubMedCentralCrossRefGoogle Scholar
  4. Asphahani F, Zhang M (2007) Cellular impedance biosensors for drug screening and toxin detection. Analyst 132:835–841PubMedPubMedCentralCrossRefGoogle Scholar
  5. Asphahani F et al (2008) Influence of cell adhesion and spreading on impedance characteristics of cell-based sensors. Biosens Bioelectron 23:1307–1313PubMedCrossRefPubMedCentralGoogle Scholar
  6. Assunção R et al (2016) Characterization of in vitro effects of patulin on intestinal epithelial and immune cells. Toxicol Lett 250–251:47–56PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bakker RC, van Kooten C, van de Lagemaat-Paape ME, Daha MR, Paul LC (2002) Renal tubular epithelial cell death and cyclosporin A. Nephrol Dial Transplant 17(7):1181–1188PubMedCrossRefPubMedCentralGoogle Scholar
  8. Banerjee P, Bhunia AK (2009) Mammalian cell-based biosensors for pathogens and toxins. Trends Biotechnol 27:179–188PubMedCrossRefPubMedCentralGoogle Scholar
  9. Booth ED, Dofferhoff O, Boogaard PJ, Watson WP (2004) Comparison of the metabolism of ethylene glycol and glycolic acid in vitro by precision-cut tissue slices form female rat, rabbit and human liver. Xenobiotica 34(1):31–48PubMedCrossRefGoogle Scholar
  10. Bourdeau P, Somers E, Richardson GM, Hickman JR (1990) Short-term toxicity tests for non-genotoxic effects. Bourdeau Philippe 9370(4):246–250Google Scholar
  11. Boussabbeh M et al (2015) Patulin induces apoptosis through ROS-mediated endoplasmic reticulum stress pathway. Toxicol Sci 144:328–337PubMedCrossRefGoogle Scholar
  12. Brandon EF, Bosch TM, Deenen MJ, Levink R, van der Wal E, van Meerveld JB, Bijl M, Beijnen JH, Schellens JH, Meijerman I (2006) Validation of in vitro cell models used in drug metabolism and transport studies; genotyping of cytochrome P450, phase II enzymes and drug transporter polymorphisms in the human hepatoma (HepG2), ovarian carcinoma (IGROV-1) and colon carcinoma (CaCo-2, LS180) cell lines. Toxicol Appl Pharm 211(1):1–10CrossRefGoogle Scholar
  13. Brosamle C, Halpern ME (2002) Characterization of myelination in the developing zebrafish. Glia 39(1):47–57PubMedCrossRefGoogle Scholar
  14. Burguera EF, Bitar M, Bruinink A (2010) Novel in vitro co-culture/methodology to investigate heterotypic cell-cell interactions. Eur Cell Mater 19:166–179PubMedCrossRefGoogle Scholar
  15. Cheng MS et al (2015) Impedimetric cell-based biosensor for real-time monitoring of cytopathic effects induced by dengue viruses. Biosens Bioelectron 70:74–80PubMedCrossRefGoogle Scholar
  16. Corsi AK (2015) A transparent window into biology: a primer on Caenorhabditis elegans. WormBook 1–31Google Scholar
  17. Csöbönyeiová M, Polák Š, Danišovič L’u (2016) Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes, and neural cells. Can J Physiol Pharm 94(7):687–694CrossRefGoogle Scholar
  18. Curtis TM et al (2009) Improved cell sensitivity and longevity in a rapid impedance-based toxicity sensor. J Appl Toxicol 29:374–380PubMedCrossRefGoogle Scholar
  19. De Walle JV et al (2010) Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis. Toxicol Appl Pharmacol 245:291–298PubMedCrossRefGoogle Scholar
  20. Deters M, Siegers CP, Strubelt O (1998) Influence of glycine on the damage induced in isolated perfused rat liver by five hepatotoxic agents. Toxicology 128(1):63–72PubMedCrossRefGoogle Scholar
  21. Dewar AJ, Moffett BJ (1979) Biochemical methods for detecting neurotoxicity – a short review. Pharmacol Ther 5(1):545–562CrossRefGoogle Scholar
  22. Dhawan A, Kwon S (2018) In vitro toxicology[M]. Academic, Cambridge, MA, pp 45–65CrossRefGoogle Scholar
  23. Dusinska M, Collins AR (2008) The comet assay in human biomonitoring: gene-environment interactions. Mutagenesis 23(3):191–205PubMedCrossRefGoogle Scholar
  24. Early RJ, Yu H, Mu XP, Xu H, Guo L, Kong Q, Zhou J, He B, Yang X, Huang H, Hu E, Jiang Y (2013) Repeat oral dose toxicity studies of melamine in rats and monkeys. Arch Toxicol 87(3):517–527PubMedCrossRefGoogle Scholar
  25. Fahrig R, Rupp M, Steinkamp-Zucht A, Bader A (1998) Use of primary rat and human hepatocyte sandwich culture for activation of indirect carcinogens: monitoring of DNA strand breaks and gene mutations in co-cultured cells. Toxicol In Vitro 12(4):431–444PubMedCrossRefGoogle Scholar
  26. Fairbairn DW, Olive PL, O’Neill KL (1995) The comet assay: a comprehensive review. Mutat Res 339(1):37–59PubMedCrossRefGoogle Scholar
  27. Fedoroff S, Richardson A (2001) Protocols for neural cell culture, 3rd edn. Humana Press, TotowaCrossRefGoogle Scholar
  28. Feng W-H et al (2016) Aflatoxin B1-induced developmental and DNA damage in Caenorhabditis elegans. Toxins 9:9PubMedCentralCrossRefPubMedGoogle Scholar
  29. Gad SC (2007) Carcinogenicity studies. Pharmaceutical sciences encyclopedia: drug discovery, development, and manufacturingGoogle Scholar
  30. Gerner I, Liebsch M, Spielmann H (2005) Assessment of the eye irritating properties of chemicals by applying alternatives to the Draize rabbit eye test: the use of QSARs and in vitro tests for the classification of eye irritation. Altern Lab Anim: Atla 33(3):215–237PubMedCrossRefGoogle Scholar
  31. Gleichmann E, Vohr H, Stringer C (1989) Testing the sensitization of T cells to chemicals. From murine graftversus-host (GvH) reactions to chemical-induced GvH-like immunological diseases. Autoimmun Toxicol 363Google Scholar
  32. González-González M et al (2019) Investigating gut permeability in animal models of disease. Front Physiol 9:1962PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gossen JA, de Leeuw WJ, Tan CH, Zwarthoff EC, Berends F, Lohman PH, Knook DL, Vijg J (1989) Efficient rescue of integrated shuttle vectors from transgenic mice: a model for studying mutations in vivo. Proc Natl Acad Sci U S A 86(20):7971–7975PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gowrinathan Y et al (2011) Toxicity assay for deoxynivalenol using Caenorhabditis elegans. Food Addit Contam A 28:1235–1241CrossRefGoogle Scholar
  35. Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124:3–20PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gu W et al (2015) A novel and simple cell-based electrochemical impedance biosensor for evaluating the combined toxicity of DON and ZEN. Biosens Bioelectron 70:447–454PubMedCrossRefPubMedCentralGoogle Scholar
  37. Guguen-Guillouzo C, Guillouzo A (2010) General review on in vitro hepatocyte models and their applications. Methods Mol Biol 640:1–40PubMedCrossRefPubMedCentralGoogle Scholar
  38. Guguen-Guillouzo C, Corlu A, Guillouzo A (2010) Stem cell-derived hepatocytes and their use in toxicology. Toxicology 270(1):3–9PubMedCrossRefPubMedCentralGoogle Scholar
  39. Harry GJ, Billingsley M, Bruinink A, Campbell IL, Classen W, Dorman DC, Galli C, Ray D, Smith RA, Tilson HA (1998) In vitro techniques for the assessment of neurotoxicity. Environ Health Perspect., 1998 106(Suppl. 1):131–158PubMedPubMedCentralGoogle Scholar
  40. Hernández-Ibáñez N et al (2016) Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens Bioelectron 77:1168–1174CrossRefPubMedGoogle Scholar
  41. Honnen S (2017) Caenorhabditis elegans as a powerful alternative model organism to promote research in genetic toxicology and biomedicine. Arch Toxicol 91:2029–2044PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hui G-H et al (2013) Electrochemical impedance spectrum frequency optimization of bitter taste cell-based sensors. Biosens Bioelectron 47:164–170PubMedCrossRefGoogle Scholar
  43. Hunt PR (2017) The C. elegans model in toxicity testing. J Appl Toxicol 37:50–59PubMedCrossRefGoogle Scholar
  44. Jakubczak JL, Merlino G, French JE, Muller WJ, Paul B, Adhya S, Garges S (1996) Analysis of genetic instability during mammary tumor progression using a novel selection-based assay for in vivo mutations in a bacteriophage λ transgene target. Proc Natl Acad Sci U S A 93(17):9073–9078PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kafi MA et al (2011) Electrochemical cell-based chip for the detection of toxic effects of bisphenol-A on neuroblastoma cells. Biosens Bioelectron 26:3371–3375PubMedCrossRefGoogle Scholar
  46. Kamp HG et al (2005) Ochratoxin A induces oxidative DNA damage in liver and kidney after oral dosing to rats. Mol Nutr Food Res 49:1160–1167PubMedCrossRefGoogle Scholar
  47. Kawauchiya T et al (2011) Correlation between the destruction of tight junction by patulin treatment and increase of phosphorylation of ZO-1 in Caco-2 human colon cancer cells. Toxicol Lett 205:196–202PubMedCrossRefGoogle Scholar
  48. Kihara T, Matsuo T, Sakamoto M, Yasuda Y, Yamamoto Y, Tanimura T (2000) Effects of prenatal aflatoxin B1 exposure on behaviors of rat offspring. Acta Med Kinki Univ 53(2):392–399Google Scholar
  49. Kim JB, Stein R, O’Hare MJ (2004) Three-dimensional in vitro tissue culture models of breast cancer – a review. Breast Cancer Res Treat 85(3):281–291PubMedCrossRefGoogle Scholar
  50. Klass M et al (1982) Cell-specific transcriptional regulation of the major sperm protein in Caenorhabditis elegans. Dev Biol 93:152–164PubMedCrossRefGoogle Scholar
  51. Knight A (2008) Non-animal methodologies within biomedical research and toxicity testing. ALTEX 25(3):213–231PubMedCrossRefGoogle Scholar
  52. Kohler SW, Provost GS, Kretz PL, Fieck A, Sorge JA, Short JM (1990) The use of transgenic mice for short-term, in vivo mutagenicity testing. Gene Anal Tech 7(8):212–218CrossRefGoogle Scholar
  53. Krzystyniak K, Brouland JP, Panaye G, Patriarca C, Verdier F, Descotes J, Revillard JP (1992) Activation of CD4+ and CD8+ lymphocyte subsets by streptozotocin in murine popliteal lymph node (PLN) test. J Autoimmun 5(2):183–197PubMedCrossRefGoogle Scholar
  54. Krzystyniak K, Tryphonas H, Fournier M (1995) Approaches to the evaluation of chemical-induced immunotoxicity. Environ Health Perspect 103(Suppl. 9):17–22PubMedPubMedCentralGoogle Scholar
  55. Kumaravel TS, Jha AN (2006) Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat Res 605(1–2):7–16PubMedCrossRefGoogle Scholar
  56. Leung MCK et al (2010) Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin B1 but not benzo[a]pyrene in vivo. Toxicol Sci 118:444–453PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lipman J, Flint O, Bradlaw J (1992) Cell culture systems and in vitro toxicity testing. Cytotechnology 8(2):129–176CrossRefGoogle Scholar
  58. Liu ZW (2006) Practical patch clamp technique. Military Medical Science Publishing House, Beijing, pp 148–181Google Scholar
  59. Liu Q et al (2014) Cell-based biosensors and their application in biomedicine. Chem Rev 114:6423–6461PubMedCrossRefGoogle Scholar
  60. Lu HH, Wang I-NE (2007) Multiscale coculture models for orthopedic interface tissue engineering. Biomed Nanostruct 357–373Google Scholar
  61. Luster MI, Portier C, Pait DG, Rosenthal GJ, Germolec DR, Corsini E (1993) Risk assessment in immunotoxicology: ii. relationships between immune and host resistance tests. Fundam. Appl. Toxicology 21(1):71–82CrossRefGoogle Scholar
  62. Maresca M et al (2001) The mycotoxin ochratoxin a alters intestinal barrier and absorption functions but has no effect on chloride secretion. Toxicol Appl Pharmacol 176:54–63PubMedCrossRefGoogle Scholar
  63. Marin DE et al (2015) Food contaminant zearalenone and its metabolites affect cytokine synthesis and intestinal epithelial integrity of porcine cells. Toxins 7:1979–1988PubMedPubMedCentralCrossRefGoogle Scholar
  64. McLaughlin J et al (2004) Ochratoxin A increases permeability through tight junctions by removal of specific claudin isoforms. Am J Phys Cell Phys 287:C1412–C1417CrossRefGoogle Scholar
  65. McLaughlin J et al (2009) The mycotoxin patulin, modulates tight junctions in caco-2 cells. Toxicol In Vitro 23:83–89PubMedCrossRefGoogle Scholar
  66. Monosson E (2013) Toxicity testing methods. Encyclopedia of earth topics. Available from:
  67. Monostory K, Kohalmy K, Ludanyi K, Czira G, Holly S, Vereczkey L, Urmos I, Klebovich I, Kobori L (2005) Biotransformation of deramciclane in primary hepatocytes of rat, mouse, rabbit, dog, and human. Drug Metab Dispos 33(11):1708–1716PubMedCrossRefGoogle Scholar
  68. Muhammed M et al (2012) The role of mycelium production and a MAPK-mediated immune response in the C. elegans-Fusarium model system. Med Mycol 50:488–496PubMedPubMedCentralCrossRefGoogle Scholar
  69. Nohmi T, Katoh M, Suzuki H, Matsui M, Yamada M, Watanabe M, Suzuki M, Horiya N, Ueda O, Shibuya T, Ikeda H, Sofuni T (1996) A new transgenic mouse mutagenesis test system using Spi- and 6-thioguanine selections. Environmen Mol Mutagen 28(4):465–470CrossRefGoogle Scholar
  70. OECD (1981a) Test no. 410: repeated dose dermal toxicity: 21/28-day study, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. Scholar
  71. OECD (1981b) Test no. 411: subchronic dermal toxicity: 90-day study, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. Scholar
  72. OECD (2002a) Test no. 420: acute oral toxicity – fixed dose procedure, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. Scholar
  73. OECD (2002b) Test no. 423: acute oral toxicity – acute toxic class method, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. Scholar
  74. OECD (2008a) Test no. 425: acute oral toxicity: up-and-down procedure, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. Scholar
  75. OECD (2008b) Test no. 407: repeated dose 28-day oral toxicity study in rodents, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. Scholar
  76. OECD (2009) Test no. 403: acute inhalation toxicity, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. Scholar
  77. OECD (2017) Test no. 402: acute dermal toxicity, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. Scholar
  78. OECD (2018a) Test no. 412: subacute inhalation toxicity: 28-day study, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. Scholar
  79. OECD (2018b) Test no. 408: repeated dose 90-day oral toxicity study in rodents, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. Scholar
  80. OECD (2018c) Test no. 413: subchronic inhalation toxicity: 90-day study, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. Scholar
  81. OECD (2018d) Test no. 453: combined chronic toxicity/carcinogenicity studies, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. Scholar
  82. OECD (2018e) Test no. 451: carcinogenicity studies, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. Scholar
  83. OECD (2018f) Test no. 443: extended one-generation reproductive toxicity study, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. Scholar
  84. OECD (2018g) Test no. 414: prenatal developmental toxicity study, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. Scholar
  85. Park MS, De Leon M, Devarajan P (2002) Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol 13(4):858–865PubMedGoogle Scholar
  86. Peng S, He W, Wu Y (2008) Toxicology Alternatives [M]. Military Medical Science Publishing House, Beijing, pp 225–226Google Scholar
  87. Pestka JJ et al (2005) Induction of apoptosis and cytokine production in the Jurkat human T cells by deoxynivalenol: role of mitogen-activated protein kinases and comparison to other 8-ketotrichothecenes. Toxicology 206:207–219PubMedCrossRefGoogle Scholar
  88. Robertus J et al (2009) Dynamic control over cell adhesive properties using molecular-based surface engineering strategies. Chem Soc Rev 39:354–378PubMedCrossRefGoogle Scholar
  89. Romero A et al (2016) Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: protective effect of illite mineral clay. Toxicology 353–354:21–33PubMedCrossRefGoogle Scholar
  90. Scheers EM, Ekwall B, Dierickx PJ (2001) In vitro long-term cytotoxicity testing of 27 MEIC chemicals on Hep G2 cells and comparison with acute human toxicity data. Toxicol In Vitro 15(2):153–161PubMedCrossRefGoogle Scholar
  91. Sergent T et al (2005) Differential modulation of ochratoxin A absorption across Caco-2 cells by dietary polyphenols, used at realistic intestinal concentrations. Toxicol Lett 159:60–70PubMedCrossRefGoogle Scholar
  92. Sergent T et al (2006) Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations. Toxicol Lett 164:167–176PubMedCrossRefGoogle Scholar
  93. Springler A et al (2016) Early activation of MAPK p44/42 is partially involved in DON-induced disruption of the intestinal barrier function and tight junction network. Toxins 8:264PubMedCentralCrossRefPubMedGoogle Scholar
  94. Srinivasan B et al (2015) TEER measurement techniques for in vitro barrier model systems. J Lab Autom 20:107–126PubMedPubMedCentralCrossRefGoogle Scholar
  95. Stoff-Khalili MA, Rivera AA, Le LP, Stoff A, Everts M, Contreras JL, Chen D, Teng L, Rots MG, Haisma HJ, Rocconi RP, Bauerschmitz GJ, Rein DT, Yamamoto M, Siegal GP, Dall P, Michael Mathis J, Curiel DT (2006) Employment of liver tissue slice analysis to assay hepatotoxicity linked to replicative and nonreplicative adenoviral agents. Cancer Gene Ther 13(6):606–618PubMedCrossRefGoogle Scholar
  96. Sung JH, Shuler ML (2010) In vitro microscale systems for systematic drug toxicity study. Bioprocess Biosyst Eng 33(1):5–19PubMedCrossRefGoogle Scholar
  97. Taranu I et al (2015) Exposure to zearalenone mycotoxin alters in vitro porcine intestinal epithelial cells by differential gene expression. Toxicol Lett 232:310–325PubMedCrossRefGoogle Scholar
  98. Tiemann U et al (2006) Influence of diets with cereal grains contaminated by graded levels of two Fusarium toxins on selected enzymatic and histological parameters of liver in gilts. Food Chem Toxicol 44:1228–1235PubMedCrossRefGoogle Scholar
  99. Truong L, Harper SL, Tanguay RL (2011) Evaluation of embryotoxicity using the zebrafish model. Methods Mol Biol 691:271–279PubMedPubMedCentralCrossRefGoogle Scholar
  100. Walum E, Clemedson C, Ekwall B (1994) Principles for the validation of in vitro toxicology test methods. Toxicol In Vitro 8(4):807–812PubMedCrossRefGoogle Scholar
  101. Wang L et al (2017) In vivo toxicity assessment of deoxynivalenol-contaminated wheat after ozone degradation. Food Addit Contam A 34:103–112CrossRefGoogle Scholar
  102. Wentzel JF et al (2017) Evaluation of the cytotoxic properties, gene expression profiles and secondary signalling responses of cultured cells exposed to fumonisin B1, deoxynivalenol and zearalenone mycotoxins. Arch Toxicol 91:2265–2282PubMedCrossRefGoogle Scholar
  103. Xia S et al (2017) Development of a simple and convenient cell-based electrochemical biosensor for evaluating the individual and combined toxicity of DON, ZEN, and AFB1. Biosens Bioelectron 97:345–351PubMedCrossRefGoogle Scholar
  104. Xing JZ et al (2005) Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem Res Toxicol 18:154–161PubMedCrossRefGoogle Scholar
  105. Yang Z et al (2015) Multi-toxic endpoints of the foodborne mycotoxins in nematode Caenorhabditis elegans. Toxins 7:5224–5235PubMedPubMedCentralCrossRefGoogle Scholar
  106. Yokoo S, Yonezawa A, Masuda S, Fukatsu A, Katsura T, Inui K (2007) Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem Pharmacol 74(3):477–487PubMedCrossRefGoogle Scholar
  107. Yokoyama H, Horie T, Awazu S (2006) Naproxen-induced oxidative stress in the isolated perfused rat liver. Chem Biol Interact 160(2):150–158PubMedCrossRefGoogle Scholar
  108. Yuan G, Wang Y, Yuan X, Zhang T, Zhao J, Huang L, Peng S (2014) T-2 toxin induces developmental toxicity and apoptosis in zebrafish embryos. J Environ Sci (China) 26(4):917–925CrossRefGoogle Scholar
  109. Zhang J et al (2015) Aflatoxin B1 and aflatoxin M1 induced cytotoxicity and DNA damage in differentiated and undifferentiated Caco-2 cells. Food Chem Toxicol 83:54–60PubMedCrossRefGoogle Scholar
  110. Zheng N et al (2018) Lactoferrin inhibits aflatoxin B1- and aflatoxin M1-induced cytotoxicity and DNA damage in Caco-2, HEK, Hep-G2, and SK-N-SH cells. Toxicon 150:77–85PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiPeople’s Republic of China
  2. 2.Nanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations