Advertisement

Ribosome, Protein Synthesis, and Aging

  • Reetika ManhasEmail author
  • Pramod C. RathEmail author
Chapter
  • 53 Downloads

Abstract

Aging involves a steady decline in the organism’s fitness leading to disease and death. Loss of proteostasis and genomic instability are considered to be some of the hallmarks of aging. The molecular aging of proteins due to chemical changes and damage to the polypeptide chains contributes to loss of proteostasis, while dysregulation of the transcriptional surveillance mechanisms leads to genomic instability. Emerging evidence points to a causative relationship between the regulation of protein synthesis and aging. This chapter attempts to summarize the involvement of various components of the translation machinery in the aging process and how they in turn get reciprocally affected by it. The roles played by the ribosome, transcriptional and translational regulation, and the signaling pathways regulating these processes during aging have been discussed. Also, theories suggesting the correlation between downregulation of protein synthesis and its contribution to longevity have been explained.

Keywords

Aging Ribosome Transcriptional regulation Translational regulation Signaling pathways Protein damage Loss of proteostasis Theories of aging 

References

  1. 1.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Charmpilas N, Daskalaki I, Papandreou ME, Tavernarakis N. Protein synthesis as an integral quality control mechanism during ageing. Ageing Res Rev. 2015;23(Pt A):75–89.PubMedGoogle Scholar
  3. 3.
    Gonskikh Y, Polacek N. Alterations of the translation apparatus during aging and stress response. Mech Ageing Dev. 2017;168:30–6.Google Scholar
  4. 4.
    Karamyshev AL, Patrick AE, Karamysheva ZN, Griesemer DS, Hudson H, Tjon-Kon-Sang S, et al. Inefficient SRP interaction with a nascent chain triggers a mRNA quality control pathway. Cell. 2014;156(1–2):146–57.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Kirstein-Miles J, Scior A, Deuerling E, Morimoto RI. The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO J. 2013;32(10):1451–68.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu B, Han Y, Qian S-B. Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol Cell. 2013;49(3):453–63.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Essers PB, Nonnekens J, Goos YJ, Betist MC, Viester MD, Mossink B, et al. A long noncoding RNA on the ribosome is required for lifespan extension. Cell Rep. 2015;10:339–45.PubMedGoogle Scholar
  8. 8.
    Chen D, Pan KZ, Palter JE, Kapahi P. Longevity determined by developmental arrest genes in Caenorhabditis elegans. Aging Cell. 2007;6(4):525–33.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, et al. Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell. 2008;133(2):292–302.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Schosserer M, Minois N, Angerer TB, Amring M, Dellago H, Harreither E, et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat Commun. 2015;6:6158.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Xue S, Barna M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol. 2012;13(6):355–69.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Vesper O, Amitai S, Belitsky M, Byrgazov K, Kaberdina AC, Engelberg-Kulka H, et al. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell. 2011;147(1):147–57.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Glass D, Viñuela A, Davies MN, Ramasamy A, Parts L, Knowles D, et al. Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biol. 2013;14(7):R75.PubMedPubMedCentralGoogle Scholar
  14. 14.
    McCarroll SA, Murphy CT, Zou S, Pletcher SD, Chin C-S, Jan YN, et al. Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet. 2004;36(2):197–204.Google Scholar
  15. 15.
    Zahn JM, Sonu R, Vogel H, Crane E, Mazan-Mamczarz K, Rabkin R, et al. Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet. 2006;2(7):e115.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Zahn JM, Poosala S, Owen AB, Ingram DK, Lustig A, Carter A, et al. AGEMAP: a gene expression database for aging in mice. PLoS Genet. 2007;3(11):e201.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Lund J, Tedesco P, Duke K, Wang J, Kim SK, Johnson TE. Transcriptional profile of aging in C. elegans. Curr Biol. 2002;12(18):1566–73.Google Scholar
  18. 18.
    Van Driessche N, Shaw C, Katoh M, Morio T, Sucgang R, Ibarra M, et al. A transcriptional profile of multicellular development in Dictyostelium discoideum. Development. 2002;129(7):1543–52.PubMedGoogle Scholar
  19. 19.
    Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, et al. The developmental transcriptome of Drosophila melanogaster. Nature. 2011;471(7339):473–9.PubMedGoogle Scholar
  20. 20.
    Zhan M, Yamaza H, Sun Y, Sinclair J, Li H, Zou S. Temporal and spatial transcriptional profiles of aging in Drosophila melanogaster. Genome Res. 2007;17(8):1236–43.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Kumar A, Gibbs JR, Beilina A, Dillman A, Kumaran R, Trabzuni D, et al. Age-associated changes in gene expression in human brain and isolated neurons. Neurobiol Aging. 2013;34(4):1199–209.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang J, Huang T, Petralia F, Long Q, Zhang B, Argmann C, et al. Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases. Sci Rep. 2015;5:15145.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Zierer J, Pallister T, Tsai P-C, Krumsiek J, Bell JT, Lauc G, et al. Exploring the molecular basis of age-related disease comorbidities using a multi-omics graphical model. Sci Rep. 2016. 5;6:37646.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Geigl JB, Langer S, Barwisch S, Pfleghaar K, Lederer G, Speicher MR. Analysis of gene expression patterns and chromosomal changes associated with aging. Cancer Res. 2004;64(23):8550–7.PubMedGoogle Scholar
  25. 25.
    Somel M, Khaitovich P, Bahn S, Pääbo S, Lachmann M. Gene expression becomes heterogeneous with age. Curr Biol. 2006;16(10):R359–60.PubMedGoogle Scholar
  26. 26.
    Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dollé MET, et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature. 2006;441(7096):1011–4.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Carlson KA, Gardner K, Pashaj A, Carlson DJ, Yu F, Eudy JD, et al. Genome-wide gene expression in relation to age in large laboratory cohorts of drosophila melanogaster. Genet Res Int. 2015;2015:1–19.Google Scholar
  28. 28.
    Viñuela A, Snoek LB, Riksen JAG, Kammenga JE. Genome-wide gene expression regulation as a function of genotype and age in C. elegans. Genome Res. 2010 Jul;20(7):929–37.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Chen G, Lustig A, Weng N. T cell aging: a review of the transcriptional changes determined from genome-wide analysis. Front Immunol. [Internet]. 2013 [cited 2018 July 6];4. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2013.00121/abstract
  30. 30.
    Enge M, Arda HE, Mignardi M, Beausang J, Bottino R, Kim SK et al. Single cell transcriptome analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. 2017 [cited 2018 July 6]. Available from: http://biorxiv.org/lookup/doi/10.1101/108043
  31. 31.
    Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol. 2015;16(10):593–610.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Masuda K, Kuwano Y, Nishida K, Rokutan K. General RBP expression in human tissues as a function of age. Ageing Res Rev. 2012;11(4):423–31.PubMedGoogle Scholar
  33. 33.
    Borbolis F, Syntichaki P. Cytoplasmic mRNA turnover and ageing. Mech Ageing Dev. 2015;152:32–42.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Pal M, Ishigaki Y, Nagy E, Maquat LE. Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA. 2001;7(1):5–15.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Miller MA, Olivas WM. Roles of Puf proteins in mRNA degradation and translation. Wiley Interdiscip Rev RNA. 2011;2(4):471–92.PubMedGoogle Scholar
  36. 36.
    Wei Y-N, Hu H-Y, Xie G-C, Fu N, Ning Z-B, Zeng R et al. Transcript and protein expression decoupling reveals RNA binding proteins and miRNAs as potential modulators of human aging. Genome Biol [Internet]. 2015 [cited 2018 July 6];16(1). Available from: http://genomebiology.com/2015/16/1/41
  37. 37.
    Bakheet T, Williams BRG, Khabar KSA. ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res. 2006;34(Database issue):D111–4.PubMedGoogle Scholar
  38. 38.
    von Roretz C, Di Marco S, Mazroui R, Gallouzi I-E. Turnover of AU-rich-containing mRNAs during stress: a matter of survival. Wiley Interdiscip Rev RNA. 2011;2(3):336–47.Google Scholar
  39. 39.
    Pont AR, Sadri N, Hsiao SJ, Smith S, Schneider RJ. mRNA decay factor AUF1 maintains normal aging, telomere maintenance, and suppression of senescence by activation of telomerase transcription. Mol Cell. 2012;47(1):5–15.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Abe M, Naqvi A, Hendriks G-J, Feltzin V, Zhu Y, Grigoriev A, et al. Impact of age-associated increase in 2′-O-methylation of miRNAs on aging and neurodegeneration in Drosophila. Genes Dev. 2014;28(1):44–57.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Boehm M. A developmental timing microRNA and its target regulate life span in C. elegans. Science. 2005;310(5756):1954–7.PubMedGoogle Scholar
  42. 42.
    Shen Y, Wollam J, Magner D, Karalay O, Antebi A. A steroid receptor-microRNA switch regulates life span in response to signals from the gonad. Science. 2012;338(6113):1472–6.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Pincus Z, Smith-Vikos T, Slack FJ. MicroRNA predictors of longevity in Caenorhabditis elegans. Kim SK, editor. PLoS Genet. 2011;7(9):e1002306.Google Scholar
  44. 44.
    Garg D, Cohen SM. miRNAs and aging: a genetic perspective. Ageing Res Rev. 2014;17:3–8.PubMedGoogle Scholar
  45. 45.
    Jung HJ, Suh Y. MicroRNA in aging: from discovery to biology. Curr Genomics. 2012;13(7):548–57.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Harries LW. MicroRNAs as mediators of the ageing process. Genes (Basel). 2014;5(3):656–70.Google Scholar
  47. 47.
    Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M. Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY). 2014;6(12):992–1009.Google Scholar
  48. 48.
    Kour S, Rath PC. Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev. 2016;26:1–21.PubMedGoogle Scholar
  49. 49.
    Kim J, Kim KM, Noh JH, Yoon J-H, Abdelmohsen K, Gorospe M. Long noncoding RNAs in diseases of aging. Biochimica et Biophysica Acta (BBA) Gene Regul Mech. 2016;1859(1):209–21.Google Scholar
  50. 50.
    Tavernarakis N. Ageing and the regulation of protein synthesis: a balancing act? Trends Cell Biol. 2008;18(5):228–35.PubMedGoogle Scholar
  51. 51.
    Rajesh K, Papadakis AI, Kazimierczak U, Peidis P, Wang S, Ferbeyre G, et al. eIF2α phosphorylation bypasses premature senescence caused by oxidative stress and pro-oxidant antitumor therapies. Aging. 2013;5(12):884–901.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell. 2007;6(1):111–9.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Rogers AN, Chen D, McColl G, Czerwieniec G, Felkey K, Gibson BW, et al. Life span extension via eIF4G inhibition is mediated by posttranscriptional remodeling of stress response gene expression in C. elegans. Cell Metab. 2011;14(1):55–66.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Syntichaki P, Troulinaki K, Tavernarakis N. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature. 2007;445(7130):922–6.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Hansen M, Taubert S, Crawford D, Libina N, Lee S-J, Kenyon C. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell. 2007;6(1):95–110.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in drosophila. Cell. 2009;139(1):149–60.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Tavernarakis N. Protein synthesis and aging: eIF4E and the soma vs. germline distinction. Cell Cycle. 2007;6(10):1168–71.PubMedGoogle Scholar
  58. 58.
    Muñoz MF, Argüelles S, Cano M, Marotta F, Ayala A. Aging and oxidative stress decrease pineal elongation factor 2: in vivo protective effect of melatonin in young rats treated with Cumene Hydroperoxide: P INEAL eEF-2 P ROTECTION BY M ELATONIN. J Cell Biochem. 2017;118(1):182–90.PubMedGoogle Scholar
  59. 59.
    Conn CS, Qian S-B. Nutrient signaling in protein homeostasis: an increase in quantity at the expense of quality. Sci Signal. 2013;6(271):ra24.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Chiabudini M, Tais A, Zhang Y, Hayashi S, Wölfle T, Fitzke E, et al. Release factor eRF3 mediates premature translation termination on polylysine-stalled ribosomes in Saccharomyces cerevisiae. Mol Cell Biol. 2014;34(21):4062–76.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Shcherbik N, Chernova TA, Chernoff YO, Pestov DG. Distinct types of translation termination generate substrates for ribosome-associated quality control. Nucleic Acids Res. 2016;44(14):6840–52.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Simm A. Protein glycation during aging and in cardiovascular disease. J Proteome. 2013;92:248–59.Google Scholar
  63. 63.
    Tanase M, Urbanska AM, Zolla V, Clement CC, Huang L, Morozova K, et al. Role of carbonyl modifications on aging-associated protein aggregation. Sci Rep. 2016;6:19311.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Höhn A, König J, Grune T. Protein oxidation in aging and the removal of oxidized proteins. J Proteome. 2013;92:132–59.Google Scholar
  65. 65.
    Gorisse L, Pietrement C, Vuiblet V, Schmelzer CEH, Köhler M, Duca L, et al. Protein carbamylation is a hallmark of aging. Proc Natl Acad Sci U S A. 2016;113(5):1191–6.PubMedGoogle Scholar
  66. 66.
    Jaisson S, Gillery P. Evaluation of nonenzymatic posttranslational modification-derived products as biomarkers of molecular aging of proteins. Clin Chem. 2010;56(9):1401–12.PubMedGoogle Scholar
  67. 67.
    Mirzaei H, Suarez JA, Longo VD. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab. 2014;25(11):558–66.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Stout GJ, Stigter ECA, Essers PB, Mulder KW, Kolkman A, Snijders DS, et al. Insulin/IGF-1-mediated longevity is marked by reduced protein metabolism. Mol Syst Biol. 2014;9(1):679.Google Scholar
  69. 69.
    Walther DM, Kasturi P, Zheng M, Pinkert S, Vecchi G, Ciryam P, et al. Widespread proteome remodeling and aggregation in aging C. elegans. Cell. 2015;161(4):919–32.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Höhn A, Weber D, Jung T, Ott C, Hugo M, Kochlik B, et al. Happily (n)ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 2017;11:482–501.PubMedGoogle Scholar
  71. 71.
    Vernace VA, Arnaud L, Schmidt-Glenewinkel T, Figueiredo-Pereira ME. Aging perturbs 26S proteasome assembly in Drosophila melanogaster. FASEB J. 2007 Sep;21(11):2672–82.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Ghazi A, Henis-Korenblit S, Kenyon C. Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex. Proc Natl Acad Sci U S A. 2007;104(14):5947–52.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Chondrogianni N, Voutetakis K, Kapetanou M, Delitsikou V, Papaevgeniou N, Sakellari M, et al. Proteasome activation: an innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res Rev. 2015;23:37–55.PubMedGoogle Scholar
  74. 74.
    Harris H, Rubinsztein DC. Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol. 2011;8(2):108–17.PubMedGoogle Scholar
  75. 75.
    Johnson JE, Johnson FB. Methionine restriction activates the retrograde response and confers both stress tolerance and lifespan extension to yeast, mouse and human cells. PLoS One. 2014;9(5):e97729.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Rattan SIS. Hormesis in aging. Ageing Res Rev. 2008 Jan;7(1):63–78.PubMedGoogle Scholar
  77. 77.
    F a C W, de S a H P, Boers-Trilles VE, AMA S. Hormesis and cellular quality control: a possible explanation for the molecular mechanisms that underlie the benefits of mild stress. Dose Response. 2012;11(3):413–30.Google Scholar
  78. 78.
    Hipkiss AR. Accumulation of altered proteins and ageing: causes and effects. Exp Gerontol. 2006;41(5):464–73.PubMedGoogle Scholar
  79. 79.
    Hipkiss AR. On why decreasing protein synthesis can increase lifespan. Mech Ageing Dev. 2007;128(5–6):412–4.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Molecular Biology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations