Aging: Reading, Reasoning, and Resolving Using Drosophila as a Model System

  • Nisha
  • Kritika Raj
  • Pragati
  • Shweta Tandon
  • Soram Idiyasan Chanu
  • Surajit SarkarEmail author


Aging is a complex process, involving both genetic and environmental factors, and can be defined as the time-dependent deterioration of the physiological and cellular functions necessary for survival and fertility. Some irretrievable series of biological changes occur during this phenomenon that inevitably results in the death of the organism. Although the exact cause of these changes is still unresolved and completely unrelated in different cases entailing no common mechanism, yet they often indicate a shared element of descent. Because of this mysterious behavior, aging process is still on the frontier of biomedical research and investigators are still trying to unravel the ambiguities of this phenomenon. The last few decades have shown remarkable improvement in the genetic analysis of aging, with a greater prominence near interpretation of molecular mechanisms, pathways, and physiological processes associated with longevity. Since limitations associated with human genetics do not permit identification or analysis of candidate gene(s) and pathway(s) and detailed comprehensive mechanistic studies, given the fact that the basic biological processes remain conserved throughout phylogeny from archaea to multicellular organism, model organisms allow easier execution of such studies. Therefore, utilization of model organisms for modifier screening and deciphering different aspects of aging phenomenon has emerged as a prime approach to study the details of aging. Out of several conventional model organisms, Drosophila melanogaster has emerged as an excellent system to interpret vital genetic/cellular molecular pathways of human aging, due to several advantageous characteristics including its short lifespan, short generation time, availability of powerful genetic tools, and conserved homology. Numerous key cellular events and pathways as well as drug discoveries have been untangled by exploiting Drosophila as a system of aging research. Thus, this chapter attempts to provide a brief outline of the role of Drosophila in understanding and easing out aging studies.


Drosophila Aging Oxidative stress Dietary restriction (DR) Molecular chaperone Insulin signaling 



Research programs in the laboratory have been supported by grants from the Department of Science and Technology (DST), Department of Biotechnology (DBT), Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, and DU/DST-PURSE scheme to SS. Nisha, KR, Pragati, ST, and SIC are supported by DBT-SRF, UGC-SRF, CSIR-JRF, UGC-JRF, and UGC-SRF fellowships, respectively.


  1. 1.
    Ables GP, Brown-Borg HM, Buffenstein R, Church CD, Elshorbagy AK, Gladyshev VN, Huang TH, Miller RA, et al. The first international mini-symposium on methionine restriction and lifespan. Front Genet. 2014;5:122.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, et al. The genome sequence of Drosophila melanogaster. Science. 2000;287:2185–95.PubMedGoogle Scholar
  3. 3.
    Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol. 2010;11:545–55.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Anantharaju A, Feller A, Chedid A. Aging liver. A review. Gerontology. 2002;48:343–53.PubMedGoogle Scholar
  5. 5.
    Anisimov VN. Metformin: do we finally have an anti-aging drug? Cell Cycle. 2013;12:3483–9.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Antico Arciuch VG, Elguero ME, Poderoso JJ, Carreras MC. Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal. 2012;16:1150–80.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Arking R. Biology of aging: observations and principles. 3rd ed. Prentice Hall: Englewood Cliffs; 1991.Google Scholar
  8. 8.
    Arking R, Buck S, Berrios A, Dwyer S, Baker GT 3rd. Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev Genet. 1991;12:362–70.PubMedGoogle Scholar
  9. 9.
    Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet. 2012;13:693–704.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Armanios M, Alder JK, Parry EM, Karim B, Strong MA, Greider CW. Short telomeres are sufficient to cause the degenerative defects associated with aging. Am J Hum Genet. 2009;85:823–32.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Arslan MA, Csermely P, Soti C. Protein homeostasis and molecular chaperones in aging. Biogerontology. 2006;7:383–9.PubMedGoogle Scholar
  12. 12.
    Bales CW, Kraus WE. Caloric restriction: implications for human cardiometabolic health. J Cardiopulm Rehabil Prev. 2013;33:201–8.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Barnes AI, Wigby S, Boone JM, Partridge L, Chapman T. Feeding, fecundity and lifespan in female Drosophila melanogaster. Proc Biol Sci. 2008;275:1675–83.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Bauer JH, Morris SN, Chang C, Flatt T, Wood JG, Helfand SL. dSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogaster. Aging (Albany NY). 2009;1:38–48.Google Scholar
  15. 15.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–42.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Bayliak MM, Lushchak VI. The golden root, Rhodiola rosea, prolongs lifespan but decreases oxidative stress resistance in yeast Saccharomyces cerevisiae. Phytomedicine. 2011;18:1262–8.PubMedGoogle Scholar
  17. 17.
    Ben-Avraham D, Muzumdar RH, Atzmon G. Epigenetic genome-wide association methylation in aging and longevity. Epigenomics. 2012;4:503–9.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol. 2015;16:593–610.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Biteau B, Karpac J, Hwangbo D, Jasper H. Regulation of Drosophila lifespan by JNK signaling. Exp Gerontol. 2011;46:349–54.PubMedGoogle Scholar
  20. 20.
    Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L. Mechanisms of lifespan extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010;11:35–46.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol. 2007;3:640–9.PubMedGoogle Scholar
  22. 22.
    Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279:349–52.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Bokov A, Chaudhuri A, Richardson A. The role of oxidative damage and stress in aging. Mech Ageing Dev. 2004;125:811–26.PubMedGoogle Scholar
  24. 24.
    Boonekamp JJ, Simons MJ, Hemerik L, Verhulst S. Telomere length behaves as biomarker of somatic redundancy rather than biological age. Aging Cell. 2013;12:330–2.PubMedGoogle Scholar
  25. 25.
    Boutros M, Agaisse H, Perrimon N. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev Cell. 2002;3:711–22.PubMedGoogle Scholar
  26. 26.
    Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010;45:466–72.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993;118:401–15.PubMedGoogle Scholar
  28. 28.
    Branson K, Robie AA, Bender J, Perona P, Dickinson MH. High-throughput ethomics in large groups of Drosophila. Nat Methods. 2009;6:451–7.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, Driege Y, Martinez P, Hafen E, et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A. 2005;102:3105–10.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Brown K, Xie S, Qiu X, Mohrin M, Shin J, Liu Y, Zhang D, Scadden DT, et al. SIRT3 reverses aging-associated degeneration. Cell Rep. 2013;3:319–27.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper MD, Hoddinott M, Sutphin GL, et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature. 2011;477:482–5.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Burtner CR, Kennedy BK. Progeria syndromes and ageing: what is the connection? Nat Rev Mol Cell Biol. 2010;11:567–78.PubMedGoogle Scholar
  33. 33.
    Cabanillas R, Cadinanos J, Villameytide JA, Perez M, Longo J, Richard JM, Alvarez R, Duran NS, et al. Nestor-Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations. Am J Med Genet A. 2011;155A:2617–25.PubMedGoogle Scholar
  34. 34.
    Cao K, Blair CD, Faddah DA, Kieckhaefer JE, Olive M, Erdos MR, Nabel EG, Collins FS. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J Clin Invest. 2011;121:2833–44.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Casillas MA Jr, Lopatina N, Andrews LG, Tollefsbol TO. Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically transformed human fibroblasts. Mol Cell Biochem. 2003;252:33–43.PubMedGoogle Scholar
  36. 36.
    Castillo-Quan JI, Li L, Kinghorn KJ, Ivanov DK, Tain LS, Slack C, Kerr F, Nespital T, et al. Lithium promotes longevity through GSK3/NRF2-dependent hormesis. Cell Rep. 2016;15:638–50.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527–605.PubMedGoogle Scholar
  38. 38.
    Chanu SI, Sarkar S. Targeted downregulation of dMyc suppresses pathogenesis of human neuronal tauopathies in Drosophila by limiting heterochromatin relaxation and Tau hyperphosphorylation. Mol Neurobiol. 2017;54:2706–19.PubMedGoogle Scholar
  39. 39.
    Chapman T, Partridge L. Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc R Soc Lond Ser B. 1996;263:755–9.Google Scholar
  40. 40.
    Chen W, White MA, Cobb MH. Stimulus-specific requirements for MAP3 kinases in activating the JNK pathway. J Biol Chem. 2002;277:49105–10.PubMedGoogle Scholar
  41. 41.
    Ching TT, Chiang WC, Chen CS, Hsu AL. Celecoxib extends C. elegans lifespan via inhibition of insulin-like signaling but not cyclooxygenase-2 activity. Aging Cell. 2011;10:506–19.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Chippindale AK, Leroi AM, Kim SB, Rose MR. Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of reproduction. J Evol Biol. 1993;6:171–93.Google Scholar
  43. 43.
    Cho J, Hur JH, Walker DW. The role of mitochondria in Drosophila aging. Exp Gerontol. 2011;46:331–4.PubMedGoogle Scholar
  44. 44.
    Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science. 2001;292:104–6.PubMedGoogle Scholar
  45. 45.
    Clark AM, Gould AB. Genetic control of adult lifespan in Drosophila melanogaster. Exp Gerontol. 1970;15:157–62.Google Scholar
  46. 46.
    Collins JJ, Evason K, Pickett CL, Schneider DL, Kornfeld K. The anticonvulsant ethosuximide disrupts sensory function to extend C. elegans lifespan. PLoS Genet. 2008;4:e1000230.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Conley KE, Jubrias SA, Esselman PC. Oxidative capacity and ageing in human muscle. J Physiol. 2000;526:203–10.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet. 2001;10:1511–8.PubMedGoogle Scholar
  49. 49.
    Curtis C, Landis GN, Folk D, Wehr NB, Hoe N, Waskar M, Abdueva D, Skvortsov D, et al. Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes. Genome Biol. 2007;8:R262.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Danilov A, Shaposhnikov M, Shevchenko O, Zemskaya N, Zhavoronkov A, Moskalev A. Influence of non-steroidal anti-inflammatory drugs on Drosophila melanogaster longevity. Oncotarget. 2015;6:19428–44.PubMedPubMedCentralGoogle Scholar
  51. 51.
    De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, et al. Lamin a truncation in Hutchinson-Gilford progeria. Science. 2003;300:2055.PubMedGoogle Scholar
  52. 52.
    Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008;22:832–53.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature. 2007;448:151–6.PubMedGoogle Scholar
  54. 54.
    Dröge W. Aging-related changes in the thiol/disulfide redox state: implications for the use of thiol antioxidants. Exp Gerontol. 2002;371:333–1345.Google Scholar
  55. 55.
    Dudas SP, Arking R. A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophila. J Gerontol A Biol Sci Med Sci. 1995;50:B117–27.PubMedGoogle Scholar
  56. 56.
    Efeyan A, Zoncu R, Sabatini DM. Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med. 2012;18:524–33.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Eisenberg T, Knauer H, Schauer A, Beuttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009;11:1305–14.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423:293–8.PubMedGoogle Scholar
  59. 59.
    Espada J, Varela I, Flores I, Ugalde AP, Cadinanos J, Pendas AM, Stewart CL, Tryggvason K, et al. Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J Cell Biol. 2008;181:27–35.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21:5427–40.PubMedGoogle Scholar
  61. 61.
    Fan HC, Ho LI, Chi CS, Chen SJ, Peng GS, Chan TM, Lin SZ, Harn HJ. Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant. 2014;23:441–8.PubMedGoogle Scholar
  62. 62.
    Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, Mitchell JR, Croteau DL, et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell. 2014;157:882–96.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL, Bohr VA. Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol. 2016;17:308–21.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Ferguson M, Mockett RJ, Shen Y, Orr WC, Sohal RS. Age-associated decline in mitochondrial respiration and electron transport in Drosophila melanogaster. Biochem J. 2005;390:501–11.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Finkel T, Holbrook NJ. Oxidants, oxidative stress and biology of ageing. Nature. 2000;408:239–47.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Flatt T. Survival costs of reproduction in Drosophila. Exp Gerontol. 2011;46:369–75.PubMedGoogle Scholar
  67. 67.
    Flatt T. A new definition of aging? Front Genet. 2012;3:148.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Fleming JE, Walton JK, Dubitsky R, Bensch KG. Aging results in an unusual expression of Drosophila heat shock proteins. Proc Natl Acad Sci U S A. 1988;85:4099–103.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Fontana L, Partridge L. Promoting health and longevity through diet: from model organisms to humans. Cell. 2015;161:106–18.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks. Trends Genet. 2007;23:413–8.PubMedGoogle Scholar
  71. 71.
    Gardner TS. The use of Drosophila melanogaster as a screening agent for longevity factors II. The effects of biotin, pyridoxine, sodium yeast nucleate, and pantothenic acid on the lifespan of the fruit fly. J Gerontol. 1948;3:9–13.PubMedGoogle Scholar
  72. 72.
    Gargano JW, Martin I, Bhandari P, Grotewiel MS. Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Exp Gerontol. 2005;40:386–95.PubMedGoogle Scholar
  73. 73.
    Gems D, Partridge L. Insulin/IGF signalling and ageing: seeing the bigger picture. Curr Opin Genet Dev. 2001;11:287–92.PubMedGoogle Scholar
  74. 74.
    Geuking P, Narasimamurthy R, Lemaitre B, Basler K, Leulier F. A non-redundant role for Drosophila Mkk4 and hemipterous/Mkk7 in TAK1-mediated activation of JNK. PLoS One. 2009;4:e7709.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Giannakou ME, Goss M, Jünger MA, Hafen E, Leevers SJ, Partridge L. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science. 2004;305:361.Google Scholar
  76. 76.
    Gong WJ, Golic KG. Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics. 2006;172:275–86.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Gonzalez-Suarez I, Redwood AB, Perkins SM, Vermolen B, Lichtensztejin D, Grotsky DA, MorgadoPalacin L, Gapud EJ, et al. Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO J. 2009;28:2414–27.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M. Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. Aging. 2014;6:992–1009.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43:405–13.PubMedGoogle Scholar
  80. 80.
    Gronke S, Clarke DF, Broughton S, Andrews TD, Partridge L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 2010;6:e1000857.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E. Functional senescence in Drosophila melanogaster. Aging Res Rev. 2005;4:372–97.Google Scholar
  82. 82.
    Grover D, Yang J, Ford D, Tavaré S, Tower J. Simultaneous tracking of movement and gene expression in multiple Drosophila melanogaster flies using GFP and DsRED fluorescent reporter transgenes. BMC Res Notes. 2009;2:58.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Guarente L. Calorie restriction and sirtuins revisited. Genes Dev. 2013;27:2072–85.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature. 2000;408:255–62.PubMedGoogle Scholar
  85. 85.
    Guha S, Cao M, Kane RM, Savino AM, Zou S, Dong Y. The longevity effect of cranberry extract in Caenorhabditis elegans is modulated by daf-16 and osr-1. Age (Dordr). 2013;35:1559–74.Google Scholar
  86. 86.
    Guillozet AL, Weintraub S, Mash DC, Mesulam MM. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol. 2003;60:729–36.PubMedGoogle Scholar
  87. 87.
    Guo L, Karpac J, Tran SL, Jasper H. PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell. 2014;156:109–22.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Haigis MC, Yankner BA. The aging stress response. Mol Cell. 2010;40:333–44.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Han S, Brunet A. Histone methylation makes its mark on longevity. Trends Cell Biol. 2012;22:42–9.PubMedGoogle Scholar
  90. 90.
    Hands S, Sinadinos C, Wyttenbach A. Polyglutamine gene function and dysfunction in the ageing brain. Biochim Biophys Acta. 2008;1779:507–21.PubMedGoogle Scholar
  91. 91.
    Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–67.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460:392–5.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Harshman LG, Haberer BA. Oxidative stress resistance: a robust correlated response to selection in extended longevity lines of Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. 2000;55:B415–7.PubMedGoogle Scholar
  95. 95.
    Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475:324–32.PubMedGoogle Scholar
  96. 96.
    Hass BS, Hart RW, Lu MH, Lyn-Cook BD. Effects of caloric restriction in animals on cellular function, oncogene expression, and DNA methylation in vitro. Mutat Res. 1993;295:281–9.PubMedGoogle Scholar
  97. 97.
    Hayflick L. The biology of human aging. Plast Reconstr Surg. 1981;67:536–50.PubMedGoogle Scholar
  98. 98.
    Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.PubMedPubMedCentralGoogle Scholar
  99. 99.
    He Y, Jasper H. Studying aging in Drosophila. Methods. 2014;68:129–33.PubMedPubMedCentralGoogle Scholar
  100. 100.
    He X, Liu RH. Cranberry phytochemicals: isolation, structure elucidation, and their antiproliferative and antioxidant activities. J Agric Food Chem. 2006;54:7069–74.PubMedGoogle Scholar
  101. 101.
    He C, Tsuchiyama SK, Nguyen QT, Plyusnina EN, Terrill SR, Sahibzada S, Patel B, Faulkner AR, et al. Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import. PLoS Genet. 2014;10:e1004860.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Helfand SL, Rogina B. Genetics of aging in the fruit fly, Drosophila melanogaster. Annu Rev Genet. 2003a;37:329–48.PubMedGoogle Scholar
  103. 103.
    Helfand SL, Rogina B. From genes to aging in Drosophila. Adv Genet. 2003b;49:67–109.PubMedGoogle Scholar
  104. 104.
    Herman MM, Miquel J, Johnson M. Insect brain as a model for study of aging. Age-related changes in Drosophila melanogaster. Acta Neuropathol. 1971;19:167–83.PubMedGoogle Scholar
  105. 105.
    Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009;361:1475–85.PubMedGoogle Scholar
  106. 106.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.PubMedGoogle Scholar
  107. 107.
    Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13:225–38.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Howell AB. Bioactive compounds in cranberries and their role in prevention of urinary tract infections. Mol Nutr Food Res. 2007;51:732–7.PubMedGoogle Scholar
  109. 109.
    Huey RB, Suess J, Hamilton H, Gilchrist GW. Starvation resistance in Drosophila melanogaster: testing for a possible ‘cannibalism’ bias. Funct Ecol. 2004;18:952–4.Google Scholar
  110. 110.
    Hutchinson EW, Shaw AJ, Rose MR. Quantitative genetics of postponed aging in Drosophila melanogaster. II Analysis of selected lines. Genetics. 1991;127:729–37.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature. 2004;429:562–6.PubMedGoogle Scholar
  112. 112.
    Hyun S, Lee JH, Jin H, Nam J, Namkoong B, Lee G, Chung J, Kim VN. Conserved microRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell. 2009;139:1096–108.PubMedGoogle Scholar
  113. 113.
    Igaki T. Correcting developmental errors by apoptosis: lessons from Drosophila JNK signaling. Apoptosis. 2009;14:1021–8.PubMedGoogle Scholar
  114. 114.
    Iliadi KG, Boulianne GL. Age-related behavioral changes in Drosophila. Ann N Y Acad Sci. 2010;1197:9–18.PubMedGoogle Scholar
  115. 115.
    Ingram DK, Zhu M, Mamczarz J, Zou S, Lane MA, Roth GS, deCabo R. Calorie restriction mimetics: an emerging research field. Aging Cell. 2006;5:97–108.PubMedGoogle Scholar
  116. 116.
    Ja WW, Carvalho GB, Mak EB, de la Rosa NN, Fang AY, Liong JC, Brummel T, Benzer S. Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci U S A. 2007;104:8253–6.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Jafari M. Drosophila melanogaster as a model system for the evaluation of anti-aging compounds. Fly (Austin). 2010;4:253–7.Google Scholar
  118. 118.
    Jafari M, Felgner JS, Bussel II, Hutchili T, Khodayari B, Rose MR, Vince-Cruz C, Mueller LD. Rhodiola: a promising anti-aging Chinese herb. Rejuvenation Res. 2007;10:587–602.PubMedGoogle Scholar
  119. 119.
    Jafari M, Zarban A, Pham S, Wang T. Rosa damascena decreased mortality in adult Drosophila. J Med Food. 2008;11:9–13.PubMedGoogle Scholar
  120. 120.
    Jain S, Thakkar N, Chhatai J, Bhadra MP, Bhadra U. Long non-coding RNA: functional agent for disease traits. RNA Biol. 2016;16:1–14.Google Scholar
  121. 121.
    Jin C, Li J, Green CD, Yu X, Tang X, Han D, Xian B, Wang D, et al. Histone demethylase UTX-1 regulates C. elegans lifespan by targeting the insulin/IGF-1 signaling pathway. Cell Metab. 2011;14:161–72.PubMedGoogle Scholar
  122. 122.
    Johnson GL, Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim Biophys Acta. 2007;1773:1341–8.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Jones MA, Grotewiel M. Drosophila as a model for age-related impairment in locomotor and other behaviors. Exp Gerontol. 2011;46:320–5.PubMedGoogle Scholar
  124. 124.
    Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol. 2004;14:885–90.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Karpac J, Jasper H. Insulin and JNK: optimizing metabolic homeostasis and lifespan. Trends Endocrinol Metab. 2009;20:100–6.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Kato M, Chen X, Inukai S, Zhao H, Slack FJ. Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA. 2011;17:1804–20.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Kenyon CJ. The genetics of ageing. Nature. 2010;464:504–12.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Kim J, Kim KM, Noh JH, Yoon JH, Abdelmohsen K, Gorospe M. Long noncoding RNAs in diseases of aging. Biochim Biophys Acta. 2016;1859:209–21.PubMedGoogle Scholar
  129. 129.
    Kirby K, Hu J, Hilliker AJ, Phillips JP. RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc Natl Acad Sci U S A. 2002;99:16162–7.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Kirkwood TB, Austad SN. Why do we age? Nature. 2000;408:233–8.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev. 2011;10:205–15.Google Scholar
  132. 132.
    Koh K, Evans JM, Hendricks JC, Sehgal A. A Drosophila model for age-associated changes in sleep: wake cycles. Proc Natl Acad Sci U S A. 2006;103:13843–7.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.PubMedGoogle Scholar
  134. 134.
    Kuno A, Horio Y. Anti-aging drugs. Nihon Rinsho. 2009;67:1384–8.PubMedGoogle Scholar
  135. 135.
    Kurapati R, Passananti HB, Rose MR, Tower J. Increased hsp22 RNA levels in Drosophila lines genetically selected for increased longevity. J Gerontol A Biol Sci Med Sci. 2000;55:B552–9.PubMedGoogle Scholar
  136. 136.
    Lapointe J, Hekimi S. When a theory of ageing ages badly. Cell Mol Life Sci. 2010;67:1–8.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Larson K, Yan SJ, Tsurumi A, Liu J, Zhou J, Gaur K, Guo D, Eickbush TH, et al. Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet. 2012;8:e1002473.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Le Bourg E. Oxidative stress, aging and longevity in Drosophila melanogaster. FEBS Lett. 2001;498:183–6.PubMedGoogle Scholar
  139. 139.
    Lee KS, Lee BS, Semnani S, Avanesian A, Um CY, Jeon HJ, Seong KM, Yu K, et al. Curcumin extends lifespan, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res. 2010;13:561–70.PubMedGoogle Scholar
  140. 140.
    Li Y, Liu L, Tollefsbol TO. Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression. FASEB J. 2010;24:1442–53.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Liao PC, Lin HY, Yuh CH, Yu LK, Wang HD. The effect of neuronal expression of heat shock proteins 26 and 27 on lifespan, neurodegeneration, and apoptosis in Drosophila. Biochem Biophys Res Commun. 2008;376:637–41.Google Scholar
  142. 142.
    Libert S, Chao Y, Chu X, Pletcher SD. Trade-offs between longevity and pathogen resistance in Drosophila melanogaster are mediated by NFkappaB signaling. Aging Cell. 2006;5:533–43.PubMedGoogle Scholar
  143. 143.
    Lin YJ, Seroude L, Benzer S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science. 1998;282:943–6.PubMedGoogle Scholar
  144. 144.
    Lin WS, Chen JY, Wang JC, Chen LY, Lin CH, Hsieh TR, Wang MF, Fu TF, et al. The anti-aging effects of Ludwigia octovalvis on Drosophila melanogaster and SAMP8 mice. Age. 2014;36:689–703.PubMedGoogle Scholar
  145. 145.
    Linford NJ, Bilgir C, Ro J, Pletcher SD. Measurement of lifespan in Drosophila melanogaster. J Vis Exp. 2013;71(71):pii 50068.Google Scholar
  146. 146.
    Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, et al. Genomic instability in laminopathy-based premature aging. Nat Med. 2005;11:780–5.PubMedGoogle Scholar
  147. 147.
    Liu GH, Suzuki K, Qu J, Sancho-Martinez I, Yi F, Li M, Kumar S, Nivet E, et al. Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell. 2011;8:688–94.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Loeb J, Northrop JH. Is there a temperature coefficient for the duration of life? Proc Natl Acad Sci U S A. 1916;2:456–7.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Loeb J, Northrop JH. On the influence of food and temperature upon the duration of life. J Biol Chem. 1917;32:103–21.Google Scholar
  150. 150.
    Lopez T, Schriner SE, Okoro M, Lu D, Chiang BT, Huey J, Jafari M. Green tea polyphenols extend the lifespan of male Drosophila melanogaster while impairing reproductive fitness. J Med Food. 2014;17:1314–21.PubMedPubMedCentralGoogle Scholar
  151. 151.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481:287–94.PubMedGoogle Scholar
  153. 153.
    Luckinbill L, Clare M. Selection for lifespan in Drosophila melanogaster. Heredity. 1985;55:9–18.PubMedGoogle Scholar
  154. 154.
    Luckinbill L, Arking R, Clare MJ, Cirocco WC, Buck S. Selection for delayed senescence in Drosophila melanogaster. Evolution. 1984;38:996–1003.PubMedGoogle Scholar
  155. 155.
    Luong N, Davies CR, Wessells RJ, Graham SM, King MT, Veech R, Bodmer R, Oldham SM. Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab. 2006;4:133–42.PubMedGoogle Scholar
  156. 156.
    Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, Zhang N, Liang S, et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 2010;20:332–40.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Mair W, Goymer P, Pletcher SD, Partridge L. Demography of dietary restriction and death in Drosophila. Science. 2003;301:1731–3.PubMedGoogle Scholar
  158. 158.
    Mair W, Piper MD, Partridge L. Calories do not explain extension of lifespan by dietary restriction in Drosophila. PLoS Biol. 2005;7:e223.Google Scholar
  159. 159.
    Marino G, Ugalde AP, Fernandez AF, Osorio FG, Fueyo A, Freije JM, Lopez-Otin C. Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proc Natl Acad Sci U S A. 2010;107:16268–73.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Maynard S, Fang EF, Scheibye-Knudsen M, Croteau DL, Bohr VA. DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb Perspect Med. 2015;5:a025130.PubMedPubMedCentralGoogle Scholar
  161. 161.
    McCarroll SA, Murphy CT, Zou S, Pletcher SD, Chin CS, Jan YN, Kenyon C, Bargmann CI, et al. Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet. 2004;36:197–204.Google Scholar
  162. 162.
    McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of lifespan and upon the ultimate body size. 1935 Nutrition. 1989;5:155–71.PubMedGoogle Scholar
  163. 163.
    McCord JM, Fridovich I. Superoxide dismutase. An enzymatic function for erythrocuperin (hemocuperin). J Biol Chem. 1969;244:6049–605.PubMedGoogle Scholar
  164. 164.
    McGuire SE, Le PT, Davis RL. The role of Drosophila mushroom body signaling in olfactory memory. Science. 2001;293:1330–3.PubMedGoogle Scholar
  165. 165.
    McKiernan SH, Colman RJ, Lopez M, Beasley TM, Aiken JM, Anderson RM, Weindruch R. Caloric restriction delays aging-induced cellular phenotypes in rhesus monkey skeletal muscle. Exp Gerontol. 2011;46:23–9.PubMedGoogle Scholar
  166. 166.
    Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci. 2015;16:345–57.PubMedGoogle Scholar
  167. 167.
    Min KJ, Flatt T, Kulaots I, Tatar M. Counting calories in Drosophila diet restriction. Exp Gerontol. 2007;42:247–51.PubMedGoogle Scholar
  168. 168.
    Min JN, Whaley RA, Sharpless NE, Lockyer P, Portbury AL, Patterson C. CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by altered protein quality control. Mol Cell Biol. 2008;28:4018–25.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Minois N. Longevity and aging: beneficial effects of exposure to mild stress. Biogerontology. 2000;1:15–29.PubMedGoogle Scholar
  170. 170.
    Minois N, Khazaeli AA, Curtsinger JW. Locomotor activity as a function of age and lifespan in Drosophila melanogaster overexpressing hsp70. Exp Gerontol. 2001;36:1137–53.PubMedGoogle Scholar
  171. 171.
    Missirlis F, Phillips JP, Jackle H. Cooperative action of antioxidant defense systems in Drosophila. Curr Biol. 2001;11:1272–7.PubMedGoogle Scholar
  172. 172.
    Mitteldorf J. An epigenetic clock controls aging. Biogerontology. 2016;17:257–65.PubMedGoogle Scholar
  173. 173.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self digestion. Nature. 2008;451:1069–75.PubMedPubMedCentralGoogle Scholar
  174. 174.
    Mockett RJ, Sohal RS, Orr WC. Overexpression of glutathione reductase extends survival in transgenic Drosophila melanogaster under hyperoxia but not normoxia. FASEB J. 1999;13:1733–42.PubMedGoogle Scholar
  175. 175.
    Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative 1002 disease and aging. Genes Dev. 2008;22:1427–38.PubMedPubMedCentralGoogle Scholar
  176. 176.
    Morley JF, Brignull HR, Weyers JJ, Morimoto RI. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2002;99:10417–22.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Morrow G, Tanguay RM. Heat shock proteins and aging in Drosophila melanogaster. Semin Cell Dev Biol. 2003;14:291–9.PubMedGoogle Scholar
  178. 178.
    Morrow G, Battistini S, Zhang P, Tanguay RM. Decreased lifespan in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila. J Biol Chem. 2004a;279:43382–5.PubMedGoogle Scholar
  179. 179.
    Morrow G, Samson M, Michaud S, Tanguay RM. Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J. 2004b;18:598–9.PubMedGoogle Scholar
  180. 180.
    Morrow G, Heikkila JJ, Tanguay RM. Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones. 2006;11:51–60.PubMedPubMedCentralGoogle Scholar
  181. 181.
    Mosammaparast N, Shi Y. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem. 2010;79:155–79.PubMedGoogle Scholar
  182. 182.
    Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev. 2012;12:661–84.PubMedGoogle Scholar
  183. 183.
    Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Cantó C, Mottis A, Jo YS, et al. The NAD(+)/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell. 2013;154:430–41.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci. 2005;6:11–22.PubMedGoogle Scholar
  185. 185.
    Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hartl MK, Hartl FU. Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci U S A. 2000;97:7841–6.PubMedPubMedCentralGoogle Scholar
  186. 186.
    Murphy MP. How mitochondria produces reactive oxygen species. Biochem J. 2009;417:1–13.PubMedGoogle Scholar
  187. 187.
    Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, et al. A whole-genome assembly of Drosophila. Science. 2000;287:2196–204.PubMedGoogle Scholar
  188. 188.
    Na H, Park J, Pyo J, Jeon H, Kim Y, Arking R, Yoo M. Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway. Mech Aging Dev. 2015;149:8–18.PubMedGoogle Scholar
  189. 189.
    Nakagawa H, Nuovo GJ, Zervos EE, Martin EW Jr, Salovaara R, Aaltonen LA, de la Chapelle A. Age-related hypermethylation of the 5′ region of MLH1 in normal colonic mucosa is associated with microsatellite-unstable colorectal cancer development. Cancer Res. 2001;61:6991–5.PubMedGoogle Scholar
  190. 190.
    Neto CC. Cranberry and its phytochemicals: a review of in vitro anticancer studies. J Nutr. 2007;137:186S–93S.PubMedGoogle Scholar
  191. 191.
    Niedzwiecki A, Kongpachith AM, Fleming JE. Aging affects expression of 70-kDa heat shock proteins in Drosophila. J Biol Chem. 1991;266:9332–8.PubMedGoogle Scholar
  192. 192.
    Nielsen MD, Luo X, Biteau B, Syverson K, Jasper H. 14-3-3 Epsilon antagonizes FoxO to control growth, apoptosis and longevity in Drosophila. Aging Cell. 2008;7:688–99.PubMedGoogle Scholar
  193. 193.
    Oishi K, Shiota M, Sakamoto K, Kasamatsu M, Ishida N. Feeding is not a more potent Zeitgeber than the light-dark cycle in Drosophila. Neuroreport. 2004;15:739–43.PubMedGoogle Scholar
  194. 194.
    Olovnikov AM. Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol. 1996;31:443–8.PubMedGoogle Scholar
  195. 195.
    Orr WC, Sohal RS. Effects of Cu-Zn superoxide dismutase overexpression on lifespan and 1034 resistance to oxidative stress in transgeneic D. melanogaster. Arch Biochem Biophys. 1993;301:34–40.PubMedGoogle Scholar
  196. 196.
    Orr WC, Sohal RS. Extension of life-span by overexpression of superoxide dismutase and 1037 catalase in Drosophila melanogaster. Science. 1994;263:1128–30.PubMedGoogle Scholar
  197. 197.
    Osorio FG, Navarro CL, Cadinanos J, Lopez-Mejia IC, Quiros PM, Bartoli C, Rivera J, Tazi J, et al. Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med. 2011;3:106ra107.PubMedGoogle Scholar
  198. 198.
    Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, Griffith D, Griffor M, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010;285:8340–51.PubMedPubMedCentralGoogle Scholar
  199. 199.
    Palikaras K, Lionaki E, Tavernarakis N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature. 2015;521:525–8.PubMedGoogle Scholar
  200. 200.
    Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42:301–34.Google Scholar
  201. 201.
    Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 2011;63:411–36.PubMedPubMedCentralGoogle Scholar
  202. 202.
    Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL. Extension of Drosophila lifespan by overexpression of human SOD1 in motor neurons. Nat Genet. 1998;19:171–4.PubMedGoogle Scholar
  203. 203.
    Partridge L, Piper MD, Mair W. Dietary restriction in Drosophila. Mech Ageing Dev. 2005;126:938–50.PubMedGoogle Scholar
  204. 204.
    Pearl R, Parker SL. Experimental studies on duration of life I. Introductory discussion of the duration of life in of Drosophila. Am Nat. 1921a;60:481–509.Google Scholar
  205. 205.
    Pearl R, Parker SL. Experimental studies on duration of life II. Hereditary differences in duration of life in line-bread strains of Drosophila. Am Nat. 1921b;56:174.Google Scholar
  206. 206.
    Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T. Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol. 2009;11:1261–7.PubMedPubMedCentralGoogle Scholar
  207. 207.
    Peng C, Zuo Y, Kwan KM, Liang Y, Ma KY, Chan HY, Huang Y, Yu H, et al. Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp Gerontol. 2012;47:170–8.PubMedGoogle Scholar
  208. 208.
    Pérez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Richardson A. Is the oxidative stress theory of aging dead? Biochim Biophys Acta. 2009;1790:1005–14.PubMedPubMedCentralGoogle Scholar
  209. 209.
    Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300:1140–2.PubMedPubMedCentralGoogle Scholar
  210. 210.
    Pfeiffenberger C, Lear BC, Keegan KP, Allada R. Locomotor activity level monitoring using the Drosophila activity monitoring (DAM) system. Cold Spring Harb Protoc. 2010;2010(11):pdb.prot5518.PubMedGoogle Scholar
  211. 211.
    Phillips JP, Hilliker AJ. Genetic analysis of oxygen defense mechanisms in Drosophila melanogaster. Adv Genet. 1990;28:43–71.PubMedGoogle Scholar
  212. 212.
    Phillips JP, Campbell SD, Michaud D, Charbonneau M, Hilliker AJ. Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci U S A. 1989;86:2761–5.PubMedPubMedCentralGoogle Scholar
  213. 213.
    Piper MD, Partridge L. Dietary restriction in Drosophila: delayed aging or experimental artefact? PLoS Genet. 2007;3:e57.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Piper MD, Blanc E, Leitao-Goncalves R, Yang M, He X, Linford NJ, Hoddinott MP, Hopfen C, et al. A holidic medium for Drosophila melanogaster. Nat Methods. 2014;11:100–5.PubMedGoogle Scholar
  215. 215.
    Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB, Partridge L. Genomewide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol. 2002;12:712–23.PubMedPubMedCentralGoogle Scholar
  216. 216.
    Poirier L, Seroude L. Genetic approaches to study aging in Drosophila melanogaster. Age. 2005;27:165–82.PubMedPubMedCentralGoogle Scholar
  217. 217.
    Pollina EA, Brunet A. Epigenetic regulation of aging stem cells. Oncogene. 2011;30:3105–26.PubMedPubMedCentralGoogle Scholar
  218. 218.
    Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem. 2009;78:959–91.Google Scholar
  219. 219.
    Ragnauth CD, Warren DT, Liu Y, McNair R, Tajsic T, Figg N, Shroff R, Skepper J, et al. Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging. Circulation. 2010;121:2200–10.PubMedGoogle Scholar
  220. 220.
    Randow F, Youle RJ. Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe. 2014;15:403–11.PubMedPubMedCentralGoogle Scholar
  221. 221.
    Reiter LT, Potocki L, Chien S, Gribskov M, Bier E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 2001;11:1114–25.PubMedPubMedCentralGoogle Scholar
  222. 222.
    Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia. 1962;18:571–3.Google Scholar
  223. 223.
    Ritossa F. Discovery of the heat shock response. Cell Stress Chaperones. 1996;1:97–8.PubMedPubMedCentralGoogle Scholar
  224. 224.
    Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A. 2004;101:15998–6003.PubMedPubMedCentralGoogle Scholar
  225. 225.
    Rogina B, Reenan RA, Nilsen SP, Helfand SL. Extended life-span conferred by co transporter gene mutations in Drosophila. Science. 2000;290:2137–40.PubMedGoogle Scholar
  226. 226.
    Rose MR. Evolutionary biology of aging. New York: Oxford University Press; 1991.Google Scholar
  227. 227.
    Rose M, Charlesworth B. A test of evolutionary theories of senescence. Nature. 1980;287:141–2.PubMedGoogle Scholar
  228. 228.
    Rose MR, Charlesworth B. Genetics of life history in Drosophila melanogaster. II. Exploratory selection experiments. Genetics. 1981;97:187–96.PubMedPubMedCentralGoogle Scholar
  229. 229.
    Rose MR, Vu LN, Park SU, Graves JL Jr. Selection on stress resistance increases longevity in Drosophila melanogaster. Exp Gerontol. 1992;27:241–50.PubMedGoogle Scholar
  230. 230.
    Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999;96:701–12.PubMedGoogle Scholar
  231. 231.
    Ryder E, Ashburner M, Bautista-Llacer R, Drummond J, Webster J, Johnson G, Morley T, Chan YS, et al. The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics. 2007;177:615–62.PubMedPubMedCentralGoogle Scholar
  232. 232.
    Sarkar S, Singh MD, Yadav R, Arunkumar KP, Pitman GW. Heat shock proteins: molecules with assorted functions. Front Biol. 2011;6:312–27.Google Scholar
  233. 233.
    Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol. 2008;10:452–9.PubMedPubMedCentralGoogle Scholar
  234. 234.
    Schriner SE, Kuramada S, Lopez TE, Truong S, Pham A, Jafari M. Extension of Drosophila lifespan by cinnamon through a sex-specific dependence on the insulin receptor substrate Chico. Exp Gerontol. 2014;60:220–30.PubMedPubMedCentralGoogle Scholar
  235. 235.
    Sebastián C, Satterstrom FK, Haigis MC, Mostoslavsky R. From sirtuin biology to human diseases: an update. J Biol Chem. 2012;287:42444–52.PubMedPubMedCentralGoogle Scholar
  236. 236.
    Seto NO, Hayashi S, Tener GM. Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life-span. Proc Natl Acad Sci U S A. 1990;87:4270–4.PubMedPubMedCentralGoogle Scholar
  237. 237.
    Shaw P, Ocorr K, Bodmer R, Oldham S. Drosophila aging 2006/2007. Exp Gerontol. 2008;43:5–10.PubMedGoogle Scholar
  238. 238.
    Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33:787–91.PubMedGoogle Scholar
  239. 239.
    Sinclair DA. Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev. 2005;126:987–1002.PubMedGoogle Scholar
  240. 240.
    Singh MD, Raj K, Sarkar S. Drosophila Myc, a novel modifier suppresses the poly(Q) toxicity by modulating the level of CREB binding protein and histone acetylation. Neurobiol Dis. 2013;63:48–61.PubMedGoogle Scholar
  241. 241.
    Smith JM. The effect of temperature and egg-laying on the longevity of Drosophila subobscura. J Exp Biol. 1958;35:832–42.Google Scholar
  242. 242.
    Soh JW, Marowsky N, Nichols TJ, Rahman AM, Miah T, Sarao P, Khasawneh R, Unnikrishnan A, et al. Curcumin is an early-acting stage-specific inducer of extended functional longevity in Drosophila. Exp Gerontol. 2013;48:229–39.PubMedGoogle Scholar
  243. 243.
    Sohal RS. Oxidative stress hypothesis of aging. Free Radic Biol Med. 2002;33:573–4.PubMedGoogle Scholar
  244. 244.
    Solon-Biet SM, McMahon AC, Ballard JW, Ruohonen K, Wu LE, Cogger VC, Warren A, Huang X, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19:418–30.PubMedPubMedCentralGoogle Scholar
  245. 245.
    Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell. 2010;143:802–12.PubMedPubMedCentralGoogle Scholar
  246. 246.
    Soti C, Csermely P. Aging and molecular chaperones. Exp Gerontol. 2003;38:1037–40.PubMedGoogle Scholar
  247. 247.
    Speakman JR, Mitchell SE. Caloric restriction. Mol Asp Med. 2011;32:159–221.Google Scholar
  248. 248.
    Stowers RS, Schwarz TL. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics. 1999;152:1631–9.PubMedPubMedCentralGoogle Scholar
  249. 249.
    Sun J, Tower J. FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the lifespan of adult Drosophila melanogaster flies. Mol Cell Biol. 1999;19:216–28.PubMedPubMedCentralGoogle Scholar
  250. 250.
    Sun Y, Yolitz J, Wang C, Spangler E, Zhan M, Zou S. Aging studies in Drosophila melanogaster. Methods Mol Biol. 2013;1048:77–93.PubMedPubMedCentralGoogle Scholar
  251. 251.
    Talens RP, Christensen K, Putter H, Willemsen G, Christiansen L, Kremer D, Suchiman HE, Slagboom PE, et al. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell. 2012;11:694–703.PubMedPubMedCentralGoogle Scholar
  252. 252.
    Tatar M. Reproductive aging in invertebrate genetic models. Ann N Y Acad Sci. 2010;1204:149–55.PubMedPubMedCentralGoogle Scholar
  253. 253.
    Tatar M, Khazaeli AA, Curtsinger JW. Chaperoning extended life. Nature. 1997;390:30.PubMedGoogle Scholar
  254. 254.
    Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001;292:107–10.PubMedGoogle Scholar
  255. 255.
    Teixeira-Castro A, Ailion M, Jalles A, Brignull HR, Vilaça JL, Dias N, Rodrigues P, Oliveira JF, et al. Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: rescue by the DAF-16 and HSF-1 pathways. Hum Mol Genet. 2011;20:2996–3009.PubMedPubMedCentralGoogle Scholar
  256. 256.
    Testa G, Biasi F, Poli G, Chiarpotto E. Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Curr Pharm Des. 2014;20:2950–77.PubMedGoogle Scholar
  257. 257.
    Theodosiou NA, Xu T. Use of FLP/FRT system to study Drosophila development. Methods. 1998;14:355–65.PubMedGoogle Scholar
  258. 258.
    Thompson RF, Atzmon G, Gheorghe C, Liang HQ, Lowes C, Greally JM, Barzilai N. Tissue-specific dysregulation of DNA methylation in aging. Aging Cell. 2010;9:506–18.PubMedPubMedCentralGoogle Scholar
  259. 259.
    Tomas-Loba A, Flores I, Fernandez-Marcos PJ, Cayuela ML, Maraver A, Tejera A, Borras C, Matheu A, et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell. 2008;135:609–22.PubMedPubMedCentralGoogle Scholar
  260. 260.
    Tower J. Transgenic methods for increasing Drosophila lifespan. Mech Aging Dev. 2000;118:1–14.PubMedGoogle Scholar
  261. 261.
    Troen BR. The biology of aging. Mt Sinai J Med. 2003;70:3–22.PubMedGoogle Scholar
  262. 262.
    Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 1997;17:3–8.PubMedGoogle Scholar
  263. 263.
    Vaĭserman AM, Koliada AK, Koshel NM, Simonenko AV, Pasiukova EG. Effect of the histone deacetylase inhibitor sodium butyrate on the viability and lifespan in Drosophila melanogaster. Adv Gerontol. 2012;25:126–31.PubMedGoogle Scholar
  264. 264.
    Varela I, Cadinanos J, Pendas AM, Gutierrez-Fernandez A, Folgueras AR, Sanchez LM, Zhou Z, Rodriguez FJ, et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature. 2005;437:564–8.PubMedPubMedCentralGoogle Scholar
  265. 265.
    Voellmy R. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones. 2004;9:122–33.PubMedPubMedCentralGoogle Scholar
  266. 266.
    Walker DW, Benzer S. Mitochondrial “swirls” induced by oxygen stress and in the Drosophila mutant hyperswirl. Proc Natl Acad Sci U S A. 2004;101:10290–5.PubMedPubMedCentralGoogle Scholar
  267. 267.
    Walker GA, Lithgow GJ. Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell. 2003;2:131–9.PubMedGoogle Scholar
  268. 268.
    Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407.PubMedPubMedCentralGoogle Scholar
  269. 269.
    Wallace DC. Mitochondrial DNA variation in human radiation and disease. Cell. 2015;163:33–8.PubMedPubMedCentralGoogle Scholar
  270. 270.
    Wang MC, Bohmann D, Jasper H. JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell. 2003;5:811–6.PubMedGoogle Scholar
  271. 271.
    Wang MC, Bohmann D, Jasper H. JNK extends lifespan and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell. 2005;121:115–25.PubMedGoogle Scholar
  272. 272.
    Wang C, Yolitz J, Alberico T, Laslo M, Sun Y, Wheeler CT, Sun X, Zou S. Cranberry interacts with dietary macronutrients to promote healthy aging in Drosophila. J Gerontol A Biol Sci. 2014a;69:945–54.Google Scholar
  273. 273.
    Wang L, Karpac J, Jasper H. Promoting longevity by maintaining metabolic and proliferative homeostasis. J Exp Biol. 2014b;217:109–18.PubMedPubMedCentralGoogle Scholar
  274. 274.
    Webb AE, Brunet A. FOXO transcription factors: key regulators of cellular quality control. Trends Biochem Sci. 2014;39:159–69.PubMedPubMedCentralGoogle Scholar
  275. 275.
    Weiss EP, Racette SB, Villareal DT, Fontana L, Steger-May K, Schechtman KB, Klein S, Holloszy JO. Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial. Am J Clin Nutr. 2006;84:1033–42.PubMedPubMedCentralGoogle Scholar
  276. 276.
    Wiegant FA, Surinova S, Ytsma E, Langelaar-Makkinje M, Wikman G, Post JA. Plant adaptogens increase lifespan and stress resistance in C. elegans. Biogerontology. 2009;10:27–42.PubMedGoogle Scholar
  277. 277.
    Wolf FW, Heberlein U. Invertebrate models of drug abuse. J Neurobiol. 2003;54:161–78.PubMedGoogle Scholar
  278. 278.
    Wong R, Piper MD, Wertheim B, Partridge L. Quantification of food intake in Drosophila. PLoS One. 2009;4:e6063.PubMedPubMedCentralGoogle Scholar
  279. 279.
    Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430:686–9.PubMedGoogle Scholar
  280. 280.
    Worman HJ. Nuclear lamins and laminopathies. J Pathol. 2012;226:316–25.PubMedGoogle Scholar
  281. 281.
    Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115–24.PubMedGoogle Scholar
  282. 282.
    Xu T, Rubin GM. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development. 1993;117:1223–37.PubMedGoogle Scholar
  283. 283.
    Yadav R, Kundu S, Sarkar S. Drosophila glob1 expresses dynamically and is required for development and oxidative stress response. Genesis. 2015;53:719–37.PubMedGoogle Scholar
  284. 284.
    Yan L, Gao S, Ho D, Park M, Ge H, Wang C, Tian Y, Lai L, et al. Calorie restriction can reverse, as well as prevent, aging cardiomyopathy. Age (Dordr). 2013;35:2177–82.Google Scholar
  285. 285.
    Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337:1062–5.PubMedPubMedCentralGoogle Scholar
  286. 286.
    Yu BP. Approaches to anti-aging intervention: the promises and the uncertainties. Mech Ageing Dev. 1999;111:73–87.PubMedGoogle Scholar
  287. 287.
    Zeitlinger J, Bohmann D. Thorax closure in Drosophila: involvement of Fos and the JNK pathway. Development. 1999;126:3947–56.PubMedGoogle Scholar
  288. 288.
    Zhao Y, Sun H, Lu J, Li X, Chen X, Tao D, Huang W, Huang B. Lifespan extension and elevated hsp gene expression in Drosophila caused by histone deacetylase inhibitors. J Exp Biol. 2005;208:697–705.PubMedGoogle Scholar
  289. 289.
    Zhu M, Hu J, Perez E, Phillips D, Kim W, Ghaedian R, Napora JK, Zou S. Effects of long-term cranberry supplementation on endocrine pancreas in aging rats. J Gerontol A Biol Sci Med Sci. 2011;66:1139–51.PubMedGoogle Scholar
  290. 290.
    Zou S, Meadows S, Sharp L, Jan LY, Jan YN. Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2000;97:13726–31.PubMedPubMedCentralGoogle Scholar
  291. 291.
    Zou S, Sinclair J, Wilson MA, Carey JR, Liedo P, Oropeza A, Kalra A, de Cabo R, et al. Comparative approaches to facilitate the discovery of prolongevity interventions: effects of tocopherols on lifespan of three invertebrate species. Mech Ageing Dev. 2007;128:222–6.PubMedGoogle Scholar
  292. 292.
    Zwaan B, Bijlsma R, Hoekstra RE. Direct selection on life-span in Drosophila melanogaster. Evolution. 1995;49:649–59.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Nisha
    • 1
  • Kritika Raj
    • 1
  • Pragati
    • 1
  • Shweta Tandon
    • 1
  • Soram Idiyasan Chanu
    • 1
  • Surajit Sarkar
    • 1
    Email author
  1. 1.Department of GeneticsUniversity of DelhiNew DelhiIndia

Personalised recommendations