Advertisement

Can Autophagy Stop the Clock: Unravelling the Mystery in Dictyostelium discoideum

  • Priyanka Sharma
  • Punita Jain
  • Anju Shrivastava
  • Shweta SaranEmail author
Chapter
  • 41 Downloads

Abstract

Autophagy is a major catabolic process in eukaryotes that helps to degrade and recycle macromolecules and organelles. Recent findings show inhibition of nutrient or growth-related signaling pathways or anti-aging pathways mediates lifespan extensions via autophagy. In the present communication, we have emphasized on the lower eukaryotic model organism Dictyostelium discoideum to study longevity and compared it to other model organisms, which uses autophagy as a major mechanism for increasing lifespan. We observed that both genetic and pharmacological manipulations on the nutrient-signaling pathway increased autophagy-mediated cell survival.

Keywords

Dictyostelium discoideum Autophagy Longevity 

Notes

Acknowledgements

SS would like to thanks Indian Council of Medical Research, India, (54/41/CFP/GER/2011-NCD-II) and University Grants Commission, India (42-181/2013-SR), for the research grants. PS thanks UGC for JRF and PJ thanks DST for the INSPIRE fellowship.

References

  1. 1.
    Gavrilov LA, Gavrilova NS. Evolutionary theories of aging and longevity. Sci World J. 2002;2:339–56.Google Scholar
  2. 2.
    Ackermann M, Stearns SC, Jenal U. Senescence in a bacterium with asymmetric division. Science. 2003;300:1920.PubMedGoogle Scholar
  3. 3.
    Nanney DL. Aging and long-term temporal regulation in ciliated protozoa. A critical review. Mech Ageing Dev. 1974;3:81–105.PubMedGoogle Scholar
  4. 4.
    Finch CE. Longevity, senescence, and the genome. The comparative biology of senescence. Chicago/London: The University of Chicago Press; 1990.Google Scholar
  5. 5.
    Medvedev ZA. On the immortality of the germ line: genetic and biochemical mechanism – a review. Mech Ageing Dev. 1981;17:331–59.PubMedGoogle Scholar
  6. 6.
    Mattson MP, Duan W, Maswood N. How does the brain control lifespan? Ageing Res Rev. 2002;1:155–65.PubMedGoogle Scholar
  7. 7.
    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Mitchell SJ, Scheibye-Knudsen M, Longo DL, de Cabo R. Animal models of aging research: implications for human aging and age-related diseases. Annu Rev Anim Biosci. 2015;3:283–303.PubMedGoogle Scholar
  9. 9.
    Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13:2570–80.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001;410:227–30.PubMedGoogle Scholar
  11. 11.
    Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci. 2004;101:15998–6003.PubMedGoogle Scholar
  12. 12.
    Howitz KT, Bitterman KB, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of Sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–6.PubMedGoogle Scholar
  13. 13.
    Wasko BM, Kaeberlein M. Yeast replicative aging: a paradigm for defining conserved longevity interventions. FEMS Yeast Res. 2014;14:148–59.PubMedGoogle Scholar
  14. 14.
    Kaeberlein M. Cell biology: a molecular age barrier. Nature. 2008;454:709–10.PubMedGoogle Scholar
  15. 15.
    Tissenbaum HA. Using C. elegans for aging research. Invertebr Reprod Dev. 2015;59:59–63.PubMedGoogle Scholar
  16. 16.
    Kenyon C, Chang J, Gensch E, Rudner A, Tablang R. A C. elegans mutant lives twice as long as wild type. Nature. 1993;366:461–4.PubMedGoogle Scholar
  17. 17.
    Vellai T, Vellai KT, Sass M, Klionsky DJ. The regulation of aging: does autophagy underlie longevity? Trends Cell Biol. 2009;19:487–94.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang L, Jones DL. The effects of aging on stem cell behavior in Drosophila. Exp Gerontol. 2011;46:340–4.PubMedGoogle Scholar
  19. 19.
    Yoshida K, Fujisawa T, Hwang JS, Ikeo K, Takashi. Degeneration after sexual differentiation in hydra and its relevance to the evolution of aging. Gene. 2006;385:64–70.PubMedGoogle Scholar
  20. 20.
    Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, Poss KD. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell. 2006;127:607–19.PubMedGoogle Scholar
  21. 21.
    Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4:2192.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev. 2013;12:661–84.PubMedGoogle Scholar
  23. 23.
    Faggioli F, Wang T, Vijg J, Montagna C. Chromosome-specific accumulation of aneuploidy in the aging mouse brain. Hum Mol Genet. 2012;21:5246–53.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Longo VD, Liou LL, Valentine JS, Gralla EB. Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys. 1999;365:131–42.PubMedGoogle Scholar
  25. 25.
    Houtkooper RH, Williams RW, Auwerx J. Metabolic networks of longevity. Cell. 2010;142:9–14.PubMedGoogle Scholar
  26. 26.
    Ohsumi Y. Yoshinori Ohsumi: autophagy from beginning to end. Interview metabolic networks of longevity by Caitlin Sedwick. J Cell Biol. 2012;197:164–5.PubMedGoogle Scholar
  27. 27.
    Madeo F, Tavernarakis N, Kroemer G. Can autophagy promote longevity? Nat Cell Biol. 2010;12:842–6.PubMedGoogle Scholar
  28. 28.
    Pyo JO, Nah J, Jung YK. Molecules and their functions in autophagy. Exp Mol Med. 2012;44:73–80.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Fraldi A, Annunziata F, Lombardi A, Kaiser HJ, Medina DL, Spampanato C. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J. 2010;29:3607–20.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell. 2011;146:682–95.PubMedGoogle Scholar
  31. 31.
    Decuypere JP, Monaco G, Bultynck G, Missiaen L, De Smedt H, Parys JB. The IP(3) receptor-mitochondria connection in apoptosis and autophagy. Biochim Biophys Acta. 2011;13:1003–13.Google Scholar
  32. 32.
    Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L. Mechanisms of lifespan extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010;11:35–46.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kroemer G. Autophagy: a druggable process that is deregulated in aging and human disease. J Clin Invest. 2015;125:1–4.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Mortimore GE, Poso AR, Lardeux BR. Mechanism and regulation of protein degradation in liver. Diabetes Metab Rev. 1989;5:49–70.PubMedGoogle Scholar
  36. 36.
    Hars ES, Qi H, Ryazanov AG, Jin S, Cai L, Hu C, Liu LF. Autophagy regulates ageing in C. elegans. Autophagy. 2007;3:93–5.PubMedGoogle Scholar
  37. 37.
    Kenyon C. A pathway that links reproductive status to lifespan in Caenorhabditis elegans. Ann N Y Acad Sci. 2010;1204:156–62.PubMedGoogle Scholar
  38. 38.
    Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun. 2017;8:14063.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature. 1996;382:536–9.PubMedGoogle Scholar
  40. 40.
    Kaeberlein M, Powers RW III, Steffen KK, Westman EA, Hu D, Dang N. Regulation of yeast replicative lifespan by TOR and Sch9 in response to nutrients. Science. 2005;310:1193–6.PubMedGoogle Scholar
  41. 41.
    Alvers AL, Fishwick LK, Wood MS, Hu D, Chung HS, Dunn WA Jr, Aris JP. Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell. 2009;8:353–69.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Aris JP, Alvers AL, Ferraiuolo RA, Fishwick LK, Hanvivatpong A, Hu D. Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast. Exp Gerontol. 2013;48:1107–19.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Tang F, Watkins JW, Bermudez M, et al. A life-span extending form of autophagy employs the vacuole-vacuole fusion machinery. Autophagy. 2008;4:874–86.PubMedGoogle Scholar
  44. 44.
    Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death. 2010;1:e10.Google Scholar
  45. 45.
    Carter LG, D’Orazio JA, Pearson KJ. Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer. 2014;21:R209–25.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15:675–90.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010;285:8340–51.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Wallace HM. Polyamines: specific metabolic regulators or multifunctional polycations? Biochem Soc Trans. 1998;26:569–71.PubMedGoogle Scholar
  49. 49.
    Hougaard DM, Bolund L, Fujiwara K, Larsson LI. Endogenous polyamines are intimately associated with highly condensed chromatin in vivo. A fluorescence cytochemical and immunocytochemical study of spermine and spermidine during the cell cycle and in reactivated nuclei. Eur J Cell Biol. 1987;44:151–5.PubMedGoogle Scholar
  50. 50.
    Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona- Gutierrez D, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009;11:1305–14.PubMedGoogle Scholar
  51. 51.
    Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325:201–4.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006;126:941–54.PubMedGoogle Scholar
  53. 53.
    Koubova J, Guarente L. How does calorie restriction work? Genes Dev. 2003;17:313–21.PubMedGoogle Scholar
  54. 54.
    Frescas D, Valenti L, Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem. 2005;280:20589–95.PubMedGoogle Scholar
  55. 55.
    Loomis WF. Genetic tools for Dictyostelium discoideum. Methods Cell Biol. 1987;28:31–65.PubMedGoogle Scholar
  56. 56.
    Yighua L, Xiaoxia W, Zhinan X, Qingbiao L, Xu D. Advances in Dictyostelium discoideum as an expression system. Chem Mag. 2004;6:58–63.Google Scholar
  57. 57.
    Eichinger L, Pachebat J, Glöckner G, Rajandream MA, Sucqang R, Berriman M, et al. The genome of the social amoeba Dictyostelium discoideum. Nature. 2005;435:43–57.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Williams JG. Transcriptional regulation of Dictyostelium pattern formation. EMBO Rep. 2006;7:694–8.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Gaudet P, Fey P, Basu S, Bushmanova YA, Dodson R, Sheppard KA, et al. Functionality and the initial steps towards a genome portal for the Amoebozoa. Nucleic Acids Res. 2011;39:D620–4.PubMedGoogle Scholar
  60. 60.
    Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993;333:169–74.PubMedGoogle Scholar
  61. 61.
    Korolchuk VI, Saiki S, Lichtenberg M, Siddiqi FH, Roberts EA, Imarisio S, et al. Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol. 2011;13:453–60.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 2001;20:5971–81.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182:685–701.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 2010;141:656–67.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Calvo-Garrido J, Escalante R. Autophagy dysfunction and ubiquitin-positive protein aggregates in Dictyostelium cells lacking Vmp1. Autophagy. 2010;6:100–9.PubMedGoogle Scholar
  66. 66.
    Raper KB. Dictyostelium discoideum: a new species of slime mold from decaying forest leaves. J Agic Res. 1935;50:135–47.Google Scholar
  67. 67.
    Konijn TM, Raper KB. Cell aggregation in Dictyostelium discoideum. Dev Biol. 1961;3:725–56.PubMedGoogle Scholar
  68. 68.
    Clarke M, Yang J, Kayman S. Analysis of the pre-starvation response in growing cells of Dictyostelium discoideum. Dev Genet. 1988;9:315–26.PubMedGoogle Scholar
  69. 69.
    Rathi A, Clarke M. Expression of early developmental genes in Dictyostelium discoideum is initiated during exponential growth by an autocrine dependent mechanism. Mech Dev. 1992;36:173–82.PubMedGoogle Scholar
  70. 70.
    Clarke M, Gomer RH. PSF and CMF, autocrine factors that regulate gene expression during growth and early development of Dictyostelium. Experientia. 1995;51:1124–34.PubMedGoogle Scholar
  71. 71.
    Sasaki K, Chae SC, Loomis WF, Iranfar N, Amagai A, Maeda Y. An immediate-early gene, srsA: its involvement in the starvation response that initiates differentiation of Dictyostelium cells. Differentiation. 2008;76:1093–103.PubMedGoogle Scholar
  72. 72.
    Brown JM, Firtel RA. Just the right size: cell counting in Dictyostelium. Trends Genet. 2000;16:191–3.PubMedGoogle Scholar
  73. 73.
    Brock DA, Gomer RH. A cell-counting factor regulating structure size in Dictyostelium. Genes Dev. 1999;13:1960–9.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Kay RR, Berks M, Traynor D. Morphogen hunting in Dictyostelium. Dev Suppl. 1989;107:81–90.Google Scholar
  75. 75.
    Mesquita A, Cardenal-Muñoz E, Dominguez E, Muñoz-Braceras S, Nuñez-Corcuera B, Phillips BA, et al. Autophagy in Dictyostelium: mechanisms regulation and disease in a simple biomedical model. Autophagy. 2017;23:1324–40.Google Scholar
  76. 76.
    Cornillon S, Foa C, Davoust J, Buonavista N, Gross JD, Golstein P. Programmed cell death in Dictyostelium. J Cell Sci. 1994;107:2691–704.PubMedGoogle Scholar
  77. 77.
    Saran S, Nakao H, Tasaka M, Iida H, Tsuji FI, Nanjundiah V, Takeuchi I. Intracellular free calcium level and its response to cAMP stimulation in developing Dictyostelium cells transformed with jellyfish apoaequorin cDNA. FEBS Lett. 1994;337:43–7.PubMedGoogle Scholar
  78. 78.
    Bloomfield G, Pears C. Superoxide signalling required for multicellular development of Dictyostelium. J Cell Sci. 2003;116:3387–97.PubMedGoogle Scholar
  79. 79.
    Roisin-Bouffay C, Luciani MF, Klein G, Levraud JP, Adam M, Golstein P. Developmental cell death in Dictyostelium does not require paracaspase. J Biol Chem. 2004;279:11489–94.PubMedGoogle Scholar
  80. 80.
    Giusti C, Tresse E, Luciani MF, Golstein P. Autophagic cell death: analysis in Dictyostelium. Biochim Biophys Acta. 2009;1793:1422–31.PubMedGoogle Scholar
  81. 81.
    Tekinay T, Wu MY, Otto GP, Anderson OR, Kessin RH. Function of the Dictyostelium discoideumAtg1 kinase during autophagy and development. Eukaryot Cell. 2006;5:1797–806.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Tung SM, Unal C, Ley A, Pena C, Tunggal B, Noegel AA, et al. Loss of DictyosteliumATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila. Cell Microbiol. 2010;12:765–80.PubMedGoogle Scholar
  83. 83.
    Vellai T. Autophagy genes and ageing. Cell Death Differ. 2009;16:94–102.PubMedGoogle Scholar
  84. 84.
    Xie Z, Nair U, Klionsky DJ. Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell. 2008;19:3290–8.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991;253:905–9.PubMedGoogle Scholar
  86. 86.
    Yen W-L, Klionsky DJ. How to live long and prosper: autophagy mitochondria, and aging. Physiology. 2008;23:248–62.PubMedGoogle Scholar
  87. 87.
    Smith EM, Finn SG, Tee AR, Browne GJ, Proud CG. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J Biol Chem. 2005;280:18717–27.PubMedGoogle Scholar
  88. 88.
    Colombo MI. Autophagy: a pathogen driven process. IUBMB Life. 2007;59:238–42.PubMedGoogle Scholar
  89. 89.
    Jain P, Sharma P, Shrivastava A, Saran S. Dictyostelium discoideum: a model system to study autophagy-mediated life extension. In: Rath PC, Sharma R, Prasad S, editors. Topics in biomedical gerontology. Puchong: Springer; 2016. p. 35–55.Google Scholar
  90. 90.
    Lohia R, Jain P, Jain M, Burma PK, Shrivastava A, Saran S. Dictyostelium discoideum Sir2D protein modulates cell type specific gene expression and is involved in autophagy. Int J Dev Biol. 2017;61:95–104.PubMedGoogle Scholar
  91. 91.
    Calvo-Garrido J, Carilla-Latorre S, Mesquita A, Escalante R. A proteolytic cleavage assay to monitor autophagy in Dictyostelium discoideum. Autophagy. 2011;7:1063–8.PubMedGoogle Scholar
  92. 92.
    Swer PB, Lohia R, Saran S. Analysis of rapamycin induced autophagy in Dictyostelium discoideum. Indian J Exp Biol. 2014;52:295–304.PubMedGoogle Scholar
  93. 93.
    Saran S. Changes in endogenous polyamine levels are associated with differentiation in Dictyostelium discoideum. Cell Biol Int. 1998;22:575–80.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Priyanka Sharma
    • 1
  • Punita Jain
    • 1
    • 2
  • Anju Shrivastava
    • 2
  • Shweta Saran
    • 1
    Email author
  1. 1.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Department of ZoologyUniversity of DelhiNew DelhiIndia

Personalised recommendations