Protein Structure and Function in Aging and Age-Related Diseases

  • Anshumali MittalEmail author
  • Pramod C. Rath


Aging is not a disease, but a complex process driven by diverse molecular pathways and biochemical events. It is usually seen as the reason of progressive loss of physiological functions that ultimately lead to death. Every species is associated with an average life expectancy, and therefore it is plausible to think that aging is programmed in our genes. Genes exert their effects by gene expression that is coupled with protein synthesis. Proteins are most abundant and structurally diverse, perform wide variety of roles, and in part maintain functional stability and homeostasis of cells. Protein misfolding, aggregation, or an alteration in protein–protein/nucleic acid/lipid interactions and modifications has the potential to disturb many metabolic pathways. During aging such alterations are accelerated and accumulations of altered proteins are correlated with age- and disease-related pathologies. Therefore, it is critical to identify and understand proteomic spectrum and its functional implications in the aging process. Protein structure and integrity of function in protein synthesis, accuracy, posttranslational modifications, and their role in metabolic pathways and associated diseases are discussed in this chapter.


Protein damage Protein modifications in aging Age-related diseases Neurodegenerative disorders 



We thank Dr. Vikash Verma (University of Massachusetts, Amherst, USA) for critical reading of the manuscript and valuable comments.


  1. 1.
    Crick F. Central dogma of molecular biology. Nature. 1970;227:561–3.PubMedGoogle Scholar
  2. 2.
    Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Lewin R. RNA can be a catalyst. Science. 1982;218:872–4.PubMedGoogle Scholar
  4. 4.
    Elsersawi A. Biochemistry of aging: wellness and longevity. Bloomington: AuthorHouse; 2010.Google Scholar
  5. 5.
    National Institute on Aging;1999.Google Scholar
  6. 6.
    Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475:324–32.PubMedGoogle Scholar
  7. 7.
    Horwich AL. Molecular chaperones in cellular protein folding: the birth of a field. Cell. 2014;157:285–8.PubMedGoogle Scholar
  8. 8.
    Cuervo AM. Autophagy and aging: keeping that old broom working. Trends Genet : TIG. 2008;24:604–12.PubMedGoogle Scholar
  9. 9.
    Karve TM, Cheema AK. Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J Amino Acids. 2011;2011:207691.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430:686–9.PubMedGoogle Scholar
  12. 12.
    Honjoh S, Yamamoto T, Uno M, Nishida E. Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature. 2009;457:726–30.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Current Biol : CB. 2007;17:1646–56.Google Scholar
  14. 14.
    Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Current Biol : CB. 2004;14:885–90.Google Scholar
  15. 15.
    Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes. 2012;61:1315–22.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Hands SL, Proud CG, Wyttenbach A. mTOR’s role in ageing: protein synthesis or autophagy? Aging. 2009;1:586–97.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kenyon CJ. The genetics of ageing. Nature. 2010;464:504–12.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Blagosklonny MV. Aging: ROS or TOR. Cell Cycle. 2008;7:3344–54.PubMedGoogle Scholar
  19. 19.
    Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science. 2005;310:1193–6.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426:620.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development. 2004;131:3897–906.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF, Um SH, Brown EJ, Cereghini S, Thomas G, et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol. 2004;24:9508–16.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014;24:92–104.PubMedGoogle Scholar
  24. 24.
    Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem. 1999;68:913–63.PubMedGoogle Scholar
  25. 25.
    Rattan SI. Synthesis, modifications, and turnover of proteins during aging. Exp Gerontol. 1996;31:33–47.PubMedGoogle Scholar
  26. 26.
    Kimball SR, Vary TC, Jefferson LS. Age-dependent decrease in the amount of eukaryotic initiation factor 2 in various rat tissues. Biochem J. 1992;286(Pt 1):263–8.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122:3589–94.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Choo AY, Blenis J. Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle. 2009;8:567–72.PubMedGoogle Scholar
  29. 29.
    McCormick MA, Tsai SY, Kennedy BK. TOR and ageing: a complex pathway for a complex process. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366:17–27.Google Scholar
  30. 30.
    Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell. 2007;6:95–110.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, Benzer S, Kapahi P. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell. 2009;139:149–60.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell. 2007;6:111–9.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J. 2001;20:4370–9.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F, et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science. 2009;326:140–4.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Troulinaki K, Tavernarakis N. Protein synthesis and ageing. New York: Nova Science Publishers, Inc; 2008.Google Scholar
  36. 36.
    Cuervo AM. Autophagy: many paths to the same end. Mol Cell Biochem. 2004;263:55–72.PubMedGoogle Scholar
  37. 37.
    Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science. 1989;246:382–5.PubMedGoogle Scholar
  39. 39.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.PubMedGoogle Scholar
  40. 40.
    Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M, Terman A. Autophagy and aging: the importance of maintaining "clean" cells. Autophagy. 2005;1:131–40.PubMedGoogle Scholar
  41. 41.
    Toth ML, Sigmond T, Borsos E, Barna J, Erdelyi P, Takacs-Vellai K, Orosz L, Kovacs AL, Csikos G, Sass M, et al. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy. 2008;4:330–8.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Hars ES, Qi H, Ryazanov AG, Jin S, Cai L, Hu C, Liu LF. Autophagy regulates ageing in C. elegans. Autophagy. 2007;3:93–5.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Juhasz G, Erdi B, Sass M, Neufeld TP. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev. 2007;21:3061–6.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 2008;4:176–84.PubMedGoogle Scholar
  45. 45.
    Fan J, Kou X, Jia S, Yang X, Yang Y, Chen N. Autophagy as a potential target for sarcopenia. J Cell Physiol. 2016;231:1450–9.PubMedGoogle Scholar
  46. 46.
    Rattan SI. Synthesis, modification and turnover of proteins during aging. Adv Exp Med Biol. 2010;694:1–13.PubMedGoogle Scholar
  47. 47.
    Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008;105:10762–7.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Stein GH, Dulic V. Origins of G1 arrest in senescent human fibroblasts. Bioessays. 1995;17:537–43.PubMedGoogle Scholar
  49. 49.
    Merrick WC. Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev. 1992;56:291–315.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Riis B, Rattan SI, Palmquist K, Nilsson A, Nygard O, Clark BF. Elongation factor 2-specific calcium and calmodulin dependent protein kinase III activity in rat livers varies with age and calorie restriction. Biochem Biophys Res Commun. 1993;192:1210–6.PubMedGoogle Scholar
  51. 51.
    Riis B, Rattan SI, Palmquist K, Clark BF, Nygard O. Dephosphorylation of the phosphorylated elongation factor-2 in the livers of calorie-restricted and freely-fed rats during ageing. Biochem Mol Biol Int. 1995;35:855–9.PubMedGoogle Scholar
  52. 52.
    Meinnel T, Mechulam Y, Blanquet S. Aminoacyl-tRNA Synthetases: occurrence, structure, and function. Washington, DC: ASM Press; 1995.Google Scholar
  53. 53.
    Kihara F, Ninomiya-Tsuji J, Ishibashi S, Ide T. Failure in S6 protein phosphorylation by serum stimulation of senescent human diploid fibroblasts, TIG-1. Mech Ageing Dev. 1986;37:27–40.PubMedGoogle Scholar
  54. 54.
    Battaini F. Protein kinase C isoforms as therapeutic targets in nervous system disease states. Pharmacol Res. 2001;44:353–61.PubMedGoogle Scholar
  55. 55.
    Amadio M, Battaini F, Pascale A. The different facets of protein kinases C: old and new players in neuronal signal transduction pathways. Pharmacol Res. 2006;54:317–25.PubMedGoogle Scholar
  56. 56.
    Van der Zee EA, Compaan JC, de Boer M, Luiten PG. Changes in PKC gamma immunoreactivity in mouse hippocampus induced by spatial discrimination learning. J Neurosci. 1992;12:4808–15.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Sacktor TC, Osten P, Valsamis H, Jiang X, Naik MU, Sublette E. Persistent activation of the zeta isoform of protein kinase C in the maintenance of long-term potentiation. Proc Natl Acad Sci U S A. 1993;90:8342–6.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Battaini F, Pascale A. Protein kinase C signal transduction regulation in physiological and pathological aging. Ann N Y Acad Sci. 2005;1057:177–92.PubMedGoogle Scholar
  59. 59.
    Pascale A, Amadio M, Govoni S, Battaini F. The aging brain, a key target for the future: the protein kinase C involvement. Pharmacol Res. 2007;55:560–9.PubMedGoogle Scholar
  60. 60.
    Mochly-Rosen D. Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science. 1995;268:247–51.PubMedGoogle Scholar
  61. 61.
    Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 1995;9:484–96.PubMedGoogle Scholar
  62. 62.
    Bloch S, Cedar H. Methylation of chromatin DNA. Nucleic Acids Res. 1976;3:1507–19.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Liu J, Jia G. Methylation modifications in eukaryotic messenger RNA. Journal of genetics and genomics =. Yi Chuan Xue Bao. 2014;41:21–33.PubMedGoogle Scholar
  64. 64.
    Zhang Y, Mittal A, Reid J, Reich S, Gamblin SJ, Wilson JR. Evolving catalytic properties of the MLL family SET domain. Structure. 2015;23:1921–33.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Nekrasov M, Wild B, Muller J. Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep. 2005;6:348–53.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell. 2015;14:924–32.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S, Vilain E. Epigenetic predictor of age. PLoS One. 2011;6:e14821.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–67.PubMedGoogle Scholar
  69. 69.
    Florath I, Butterbach K, Muller H, Bewerunge-Hudler M, Brenner H. Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet. 2014;23:1186–201.PubMedGoogle Scholar
  70. 70.
    Schosserer M, Minois N, Angerer TB, Amring M, Dellago H, Harreither E, Calle-Perez A, Pircher A, Gerstl MP, Pfeifenberger S, et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat Commun. 2015;6:6158.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Blanco S, Frye M. Role of RNA methyltransferases in tissue renewal and pathology. Curr Opin Cell Biol. 2014;31:1–7.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Huang M. The University of Western Ontario;2012.Google Scholar
  73. 73.
    Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Eissenberg JC, Shilatifard A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol. 2010;339:240–9.PubMedGoogle Scholar
  75. 75.
    Bibikova M, Laurent LC, Ren B, Loring JF, Fan JB. Unraveling epigenetic regulation in embryonic stem cells. Cell Stem Cell. 2008;2:123–34.PubMedGoogle Scholar
  76. 76.
    Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD, Hess JL. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell. 2002;10:1107–17.PubMedGoogle Scholar
  77. 77.
    Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS, Maro GS, Han S, Banko MR, Gozani O, Brunet A. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature. 2010;466:383–7.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Han S, Brunet A. Histone methylation makes its mark on longevity. Trends Cell Biol. 2012;22:42–9.PubMedGoogle Scholar
  79. 79.
    Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity and aging. Cell. 2016;166:822–39.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Barber JR, Clarke S. Membrane protein carboxyl methylation increases with human erythrocyte age. Evidence for an increase in the number of methylatable sites. J Biol Chem. 1983;258:1189–96.PubMedGoogle Scholar
  81. 81.
    de la Mora-de la Mora I, Torres-Larios A, Enriquez-Flores S, Mendez ST, Castillo-Villanueva A, Gomez-Manzo S, Lopez-Velazquez G, Marcial-Quino J, Torres-Arroyo A, Garcia-Torres I, et al. Structural effects of protein aging: terminal marking by deamidation in human triosephosphate isomerase. PLoS One. 2015;10:e0123379.Google Scholar
  82. 82.
    Robinson NE, Robinson AB. Deamidation of human proteins. Proc Natl Acad Sci U S A. 2001;98:12409–13.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Lindner H, Helliger W. Age-dependent deamidation of asparagine residues in proteins. Exp Gerontol. 2001;36:1551–63.PubMedGoogle Scholar
  84. 84.
    Scotchler JW, Robinson AB. Deamidation of glutaminyl residues: dependence on pH, temperature, and ionic strength. Anal Biochem. 1974;59:319–22.PubMedGoogle Scholar
  85. 85.
    Robinson NE, Robinson AB. Molecular clocks. Proc Natl Acad Sci U S A. 2001;98:944–9.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Toyama BH, Hetzer MW. Protein homeostasis: live long, won’t prosper. Nat Rev Mol Cell Biol. 2013;14:55–61.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Masters PM, Bada JL, Zigler JS Jr. Aspartic acid racemisation in the human lens during ageing and in cataract formation. Nature. 1977;268:71–3.PubMedGoogle Scholar
  88. 88.
    Helfman PM, Bada JL. Aspartic acid racemisation in dentine as a measure of ageing. Nature. 1976;262:279–81.PubMedGoogle Scholar
  89. 89.
    Helfman PM, Bada JL. Aspartic acid racemization in tooth enamel from living humans. Proc Natl Acad Sci U S A. 1975;72:2891–4.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Hooi MY, Raftery MJ, Truscott RJ. Age-dependent deamidation of glutamine residues in human gammaS crystallin: deamidation and unstructured regions. Protein Sci. 2012;21:1074–9.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Lampiasi N, Umezawa K, Montalto G, Cervello M. Poly (ADP-ribose) polymerase inhibition synergizes with the NF-kappaB inhibitor DHMEQ to kill hepatocellular carcinoma cells. Biochim Biophys Acta. 2014;1843:2662–73.PubMedGoogle Scholar
  92. 92.
    Schey KL, Little M, Fowler JG, Crouch RK. Characterization of human lens major intrinsic protein structure. Invest Ophthalmol Vis Sci. 2000;41:175–82.PubMedGoogle Scholar
  93. 93.
    Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Harman D. Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009. Biogerontology. 2009;10:773–81.PubMedGoogle Scholar
  95. 95.
    de Graff AM, Hazoglou MJ, Dill KA. Highly charged proteins: the Achilles’ heel of aging proteomes. Structure. 2016;24:329–36.PubMedGoogle Scholar
  96. 96.
    Stadtman ER. Protein oxidation and aging. Science. 1992;257:1220–4.PubMedGoogle Scholar
  97. 97.
    Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A. Protein carbonylation in human diseases. Trends Mol Med. 2003;9:169–76.PubMedGoogle Scholar
  98. 98.
    Tanase M, Urbanska AM, Zolla V, Clement CC, Huang L, Morozova K, Follo C, Goldberg M, Roda B, Reschiglian P, et al. Role of carbonyl modifications on aging-associated protein aggregation. Sci Rep. 2016;6:19311.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Hassa PO, Hottiger MO. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci. 2008;13:3046–82.PubMedGoogle Scholar
  100. 100.
    Piskunova TS, Yurova MN, Ovsyannikov AI, Semenchenko AV, Zabezhinski MA, Popovich IG, Wang ZQ, Anisimov VN. Deficiency in poly(ADP-ribose) Polymerase-1 (PARP-1) accelerates aging and spontaneous carcinogenesis in mice. Curr Gerontol Geriatr Res. 2008;2008:754190.PubMedCentralGoogle Scholar
  101. 101.
    Beneke S, Burkle A. Poly(ADP-ribosyl)ation in mammalian ageing. Nucleic Acids Res. 2007;35:7456–65.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Saxena A, Saffery R, Wong LH, Kalitsis P, Choo KH. Centromere proteins Cenpa, Cenpb, and Bub3 interact with poly(ADP-ribose) polymerase-1 protein and are poly(ADP-ribosyl)ated. J Biol Chem. 2002;277:26921–6.PubMedGoogle Scholar
  103. 103.
    O’Connor MS, Safari A, Liu D, Qin J, Songyang Z. The human Rap1 protein complex and modulation of telomere length. J Biol Chem. 2004;279:28585–91.PubMedGoogle Scholar
  104. 104.
    Dell’Orco RT, Anderson LE. Decline of poly(ADP-ribosyl)ation during in vitro senescence in human diploid fibroblasts. J Cell Physiol. 1991;146:216–21.PubMedGoogle Scholar
  105. 105.
    Riis B, Rattan SI, Derventzi A, Clark BF. Reduced levels of ADP-ribosylatable elongation factor-2 in aged and SV40-transformed human cell cultures. FEBS Lett. 1990;266:45–7.PubMedGoogle Scholar
  106. 106.
    Dobson CM. Protein folding and misfolding. Nature. 2003;426:884–90.PubMedGoogle Scholar
  107. 107.
    Vendruscolo M, Knowles TP, Dobson CM. Protein solubility and protein homeostasis: a generic view of protein misfolding disorders. Cold Spring Harb Perspect Biol. 2011;3:a010454.Google Scholar
  108. 108.
    Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell. 2006;125:443–51.PubMedGoogle Scholar
  109. 109.
    Berrios GE. Alzheimer’s disease: A conceptual history. Int J Geriatr Psychiatry. 1990;5:355–65.Google Scholar
  110. 110.
    Wilson RS, Barral S, Lee JH, Leurgans SE, Foroud TM, Sweet RA, Graff-Radford N, Bird TD, Mayeux R, Bennett DA. Heritability of different forms of memory in the late onset Alzheimer’s disease family study. J Alzheimers Dis. 2011;23:249–55.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med. 2001;7:548–54.PubMedGoogle Scholar
  112. 112.
    Hardy J, A.D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12:383–8.PubMedGoogle Scholar
  113. 113.
    Mudher A, Lovestone S. Alzheimer’s disease-do tauists and baptists finally shake hands? Trends Neurosci. 2002;25:22–6.PubMedGoogle Scholar
  114. 114.
    Saido TC. Metabolism of amyloid beta peptide and pathogenesis of Alzheimer’s disease. Proc Jpn Acad Ser B Phys Biol Sci. 2013;89:321–39.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K. Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis. 2013;33(Suppl 1):S123–39.PubMedGoogle Scholar
  116. 116.
    Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R. Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell. 2013;154:1257–68.PubMedGoogle Scholar
  117. 117.
    Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE, Smith SO. Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol. 2010;17:561–7.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Schmidt M, Sachse C, Richter W, Xu C, Fandrich M, Grigorieff N. Comparison of Alzheimer Abeta(1-40) and Abeta(1-42) amyloid fibrils reveals similar protofilament structures. Proc Natl Acad Sci U S A. 2009;106:19813–8.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Kirschner DA, Abraham C, Selkoe DJ. X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation. Proc Natl Acad Sci U S A. 1986;83:503–7.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Paravastu AK, Leapman RD, Yau WM, Tycko R. Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. Proc Natl Acad Sci U S A. 2008;105:18349–54.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Dobeli H, Schubert D, Riek R. 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc Natl Acad Sci U S A. 2005;102:17342–7.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenov M, Aksenova M, Gabbita SP, Wu JF, Carney JM, et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem. 1995;65:2146–56.PubMedGoogle Scholar
  123. 123.
    Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR. Protein oxidation in the brain in Alzheimer’s disease. Neuroscience. 2001;103:373–83.PubMedGoogle Scholar
  124. 124.
    Aksenov M, Aksenova M, Butterfield DA, Markesbery WR. Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem. 2000;74:2520–7.PubMedGoogle Scholar
  125. 125.
    Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med. 2002;33:562–71.PubMedGoogle Scholar
  126. 126.
    Bishop P, Rocca D, Henley JM. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J. 2016;473:2453–62.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Rodriguez JA, Ivanova MI, Sawaya MR, Cascio D, Reyes FE, Shi D, Sangwan S, Guenther EL, Johnson LM, Zhang M, et al. Structure of the toxic core of alpha-synuclein from invisible crystals. Nature. 2015;525:486–90.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000;290:985–9.PubMedGoogle Scholar
  130. 130.
    Thomas B, Beal MF. Parkinson’s disease. Hum Mol Genet. 2007;16(2):R183–94.PubMedGoogle Scholar
  131. 131.
    Tan JM, Wong ES, Lim KL. Protein misfolding and aggregation in Parkinson’s disease. Antioxid Redox Signal. 2009;11:2119–34.PubMedGoogle Scholar
  132. 132.
    Rana A, Rera M, Walker DW. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci U S A. 2013;110:8638–43.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet. 1998;18:106–8.PubMedGoogle Scholar
  134. 134.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.PubMedGoogle Scholar
  135. 135.
    Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, et al. Alpha-Synuclein locus triplication causes Parkinson’s disease. Science. 2003;302:841.PubMedGoogle Scholar
  136. 136.
    Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90:11282–6.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Giasson BI, Murray IV, Trojanowski JQ, Lee VM. A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem. 2001;276:2380–6.PubMedGoogle Scholar
  138. 138.
    Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany MB. Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J Neurosci. 2007;27:3338–46.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Der-Sarkissian A, Jao CC, Chen J, Langen R. Structural organization of alpha-synuclein fibrils studied by site-directed spin labeling. J Biol Chem. 2003;278:37530–5.PubMedGoogle Scholar
  140. 140.
    Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med. 1998;4:1318–20.PubMedGoogle Scholar
  141. 141.
    Young VR, Steffee WP, Pencharz PB, Winterer JC, Scrimshaw NS. Total human body protein synthesis in relation to protein requirements at various ages. Nature. 1975;253:192–4.PubMedGoogle Scholar
  142. 142.
    Lewis SE, Goldspink DF, Phillips JG, Merry BJ, Holehan AM. The effects of aging and chronic dietary restriction on whole body growth and protein turnover in the rat. Exp Gerontol. 1985;20:253–63.PubMedGoogle Scholar
  143. 143.
    Ryazanov AG, Nefsky BS. Protein turnover plays a key role in aging. Mech Ageing Dev. 2002;123:207–13.PubMedGoogle Scholar
  144. 144.
    Prasanna HR, Lane RS. Protein degradation in aged nematodes (Turbatrix aceti). Biochem Biophys Res Commun. 1979;86:552–9.PubMedGoogle Scholar
  145. 145.
    Alves-Rodrigues A, Gregori L, Figueiredo-Pereira ME. Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci. 1998;21:516–20.PubMedGoogle Scholar
  146. 146.
    Friguet B, Bulteau AL, Chondrogianni N, Conconi M, Petropoulos I. Protein degradation by the proteasome and its implications in aging. Ann N Y Acad Sci. 2000;908:143–54.PubMedGoogle Scholar
  147. 147.
    Cuervo AM, Dice JF. When lysosomes get old. Exp Gerontol. 2000;35:119–31.PubMedGoogle Scholar
  148. 148.
    Pan JX, Short SR, Goff SA, Dice JF. Ubiquitin pools, ubiquitin mRNA levels, and ubiquitin-mediated proteolysis in aging human fibroblasts. Exp Gerontol. 1993;28:39–49.PubMedGoogle Scholar
  149. 149.
    Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F, Hishida T, Li M, Lam D, Kurita M, Beyret E, et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell. 2016;167(1719–1733):e1712.Google Scholar
  150. 150.
    Kour S, Rath PC. Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain. Int J Dev Neurosci. 2015;47:286–97.PubMedGoogle Scholar
  151. 151.
    Kour S, Rath PC. Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain. Int J Dev Neurosci. 2015;46:55–66.PubMedGoogle Scholar
  152. 152.
    Kour S, Rath PC. Age-related expression of a repeat-rich intergenic long noncoding RNA in the rat brain. Mol Neurobiol. 2016;54:639–60.PubMedGoogle Scholar
  153. 153.
    Kour S, Rath PC. Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev. 2016;26:1–21.PubMedGoogle Scholar
  154. 154.
    Kour S, Rath PC. All-trans retinoic acid induces expression of a novel intergenic long noncoding RNA in adult rat primary hippocampal neurons. J Mol Neurosci. 2016;58:266–76.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Molecular Biology and MicrobiologyTufts University School of MedicineBostonUSA
  2. 2.Molecular Biology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations