Advertisement

High Sensitive and Efficient Circular Polarized Rectenna Design for RF Energy Harvesting at 5.8 GHz

  • Mohamed Adel SennouniEmail author
  • Jamal Zbitou
  • Benaissa Abboud
  • Abdelwahed Tribak
  • Hamid Bennis
  • Mohamed Latrach
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 366)

Abstract

In this paper a planar rectenna (rectifier + antenna) design which is the crucial part in a microwave power transmission system is presented. The developed structure is suitable to harvest RF energy at 5.8GHz ISM frequency band for powering devices involving low power consumption, located in unreachable area or needing expensive maintenance costs. The proposed design incorporate a 2 × 2 circular polarized antenna array with an enhanced directivity of about 10.2 dBi and an overall size of 14.6 × 8 cm2 built and carried out by using CST Microwave Studio software. The receiving antenna is associated with a microstrip rectifier that combines series and shunt configuration employed Schottky diode HSMS2852 and HSMS2850. The RF-to-DC rectifier circuit is designed and simulated by using schematic simulation in ADS software. An output DC voltage of 2.2 V and a RF-to-DC conversion efficiency of more than 70% were achieved with an optimum load resistance of 6 kΩ for 0 dBm microwave incident power level.

Keywords

Planar rectenna Microwave power transmission RF energy ISM band Antenna array Microstrip rectifier Conversion efficiency CST-Microwave studio ADS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tesla, N.: Experiments with Alternate Current of High Potential and High Frequency, McGraw (1904)Google Scholar
  2. 2.
    Tesla, N.: The transmission of electric energy without wires. The thirteenth Anniversary Number of the Electrical World and Engineer (1904)Google Scholar
  3. 3.
    Brown, W.C.: The history of Power transmission by radio waves, IEEE transaction on microwave theory and techniques. IEEE Trans. MTT 32, 1230–1242 (1984)CrossRefGoogle Scholar
  4. 4.
    Akkermans, J.A.G., van Beurden, M.C., Doodeman, G.J.N., Visser, H.J.: Analytical models for low power rectenna design. IEEE Antennas Wireless Propag. Lett. 4, 187–190 (2005)CrossRefGoogle Scholar
  5. 5.
    Koert, P., Cha, J., Machina, M.: 35 and 94 GHz rectifying antenna systems. In: SPS 91-Power from Space Dig., Paris, France, pp. 541–547, August 1991Google Scholar
  6. 6.
    Yoo, T.W., Chang, K.: Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans. Microw. Theory Tech. 40(6), 1259–1266 (1992)CrossRefGoogle Scholar
  7. 7.
    Tu, W.-H., Hsu, S.-H., Chang, K.: Compact 5.8-GHz rectenna using stepped-impedance dipole antenna. IEEE Antenna and Wireless Propagation Letters 6, 282–284 (2007)CrossRefGoogle Scholar
  8. 8.
    Ren, Y.-J., Li, M.-Y., Chang, K.: 35 GHz rectifying antenna for wireless power transmission. Electronics Letters 24th 43(11), May 2007CrossRefGoogle Scholar
  9. 9.
    Hagerty, J.A., Popovic, Z.: An experimental and theoretical characterization of a broadband arbitrarily-polarized rectenna array. In: IEEE Microw. Symp. Dig., vol. 3, pp. 1855–1858, May 2001Google Scholar
  10. 10.
    McSpadden, J.O., Chang, K.: A dual polarized circular patch rectifying antenna at 2.45GHz for microwave power conversion and detection. In: IEEE Microw. Symp. Dig., vol. 3, pp. 1749–1752 (1994)Google Scholar
  11. 11.
    Zbitou, J., Latrach, M., Toutain, S.: Hybrid rectenna and monolithic integrated zero-bias microwave rectifier. IEEE Trans. Microw. Theory Tech. 54(1), 147–152 (2006)CrossRefGoogle Scholar
  12. 12.
    Huang, W., Zhang, B., Chen, X., Huang, K., Liu, C.: Study on an S-band rectenna array for wireless microwave power transmission. Progress in Electromagnetics Research 135, 747–758 (2013)CrossRefGoogle Scholar
  13. 13.
    Vera, G., Georgiadis, A., Collado, A., Via, S.: Design of a 2.45 GHz rectenna for electromagnetic (EM) energy scavenging. In: IEEE Radio Wireless Symp., pp. 61–64 (2010)Google Scholar
  14. 14.
    Falkenstein, E., Roberg, M., Popovi, Z.: Low-Power Wireless Power Delivery. IEEE Transactions on Microwave Theory and Techniques, 0018–9480 (2012)Google Scholar
  15. 15.
    Rasshofer, R.H., Thieme, M.O., Biebl, E.M.: Circularly polarized millimeter-wave rectenna on silicon substrate. IEEE Trans. Microw. Theory Tech. 46(5), 715–718 (1998)CrossRefGoogle Scholar
  16. 16.
    Heikkinen, J., Kivikoski, M.: Low-profile circularly polarized rectifying antenna for wireless power transmission at 5.8 GHz. IEEE Microw. And Wirel. Compon. Lett. 14(4), April 2004Google Scholar
  17. 17.
    Ali, M., Yang, G., Dougal, R.: A new circularly polarized rectenna for wireless power transmission and data communication. IEEE Antenn. Wirel. Propag. Lett. 4, 205–208 (2005)CrossRefGoogle Scholar
  18. 18.
    Wong, K.-L., Huang, C.-C., Chen, W.-S.: Printed ring slot antenna for circular polarization. IEEE Trans. Antennas Propagation 50, 75–77 (2002)CrossRefGoogle Scholar
  19. 19.
    Fries, M.K., Vahldieck, R.: Uniplanar circularly polarized slot-ring antenna architectures. Radio Sci. 38(2), VIC5/1–VIC5/10, March/April 2003Google Scholar
  20. 20.
    Strassner, B., Chang, K.: 5.8-GHz circularly polarized rectifying antenna for wireless microwave power transmission. IEEE Trans. Microwave Theory Tech. 50(8), 1870–1876 (2002)CrossRefGoogle Scholar
  21. 21.
    Slavova, A., Omar, A.S.: Wideband rectenna for energy recycling. In: Proc. IEEE Antennas and Propag. Society Int. Symp., vol. 3, pp. 954–957, June 2003Google Scholar
  22. 22.
    Soliman, E.A., De Raedt, W., Vandenbosch, G.A.E.: Circularly polarized slot antenna dual-fed with microstrip lines. Journal of Electromag. Waves & Appl. 22, 2259–2267 (2008)Google Scholar
  23. 23.
    Garg, R.: Microstrip antenna design handbook. Boston, Mass.[u.a.]: Artech House (2001)Google Scholar
  24. 24.
    Computer Simulation Technology. www.cst.com
  25. 25.
    Avago technologies: HSMS-285x Series Surface Mount Zero Bias Schottky Detector Diodes data sheet. http://www.avagotech.com

Copyright information

© Springer Science+Business Media Singapore 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Mohamed Adel Sennouni
    • 1
    Email author
  • Jamal Zbitou
    • 2
  • Benaissa Abboud
    • 1
  • Abdelwahed Tribak
    • 3
  • Hamid Bennis
    • 2
  • Mohamed Latrach
    • 4
  1. 1.LITEN laboratory FSTSUniversity of Hassan the 1STSettatMorocco
  2. 2.LMEET laboratory FSTSUniversity of Hassan the 1STSettatMorocco
  3. 3.National Institute of Post and Telecommunication (INPT)RabatMorocco
  4. 4.RF & Hyper group ESEOAngersFrance

Personalised recommendations