Deep Learning Architectures for Medical Diagnosis

  • Utku KoseEmail author
  • Omer Deperlioglu
  • Jafar Alzubi
  • Bogdan Patrut
Part of the Studies in Computational Intelligence book series (SCI, volume 909)


Following an introduction to the artificial intelligence and decision support systems in the Chap.  1, it is possible to focus on deep learning and exact architectures of deep learning used for medical diagnosis.


  1. 1.
    O. Deperlioglu, Intelligent techniques inspired by nature and used in biomedical engineering, in Biotechnology: Concepts, Methodologies, Tools, and Applications (IGI Global, 2019), pp. 666–692Google Scholar
  2. 2.
    L. Deng, D. Yu, Deep learning: methods and applications. Foundations Trends® Sig. Process. 7(3–4), 197–387 (2014)Google Scholar
  3. 3.
    M.Z. Alom, T.M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M.S. Nasrin, V.K. Asari, A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3), 292 (2019)Google Scholar
  4. 4.
    S. Srivastava, S. Soman, A. Rai, P.K. Srivastava, Deep learning for health informatics: recent trends and future directions, in 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). (IEEE, 2017), pp. 1665–1670Google Scholar
  5. 5.
    I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016)Google Scholar
  6. 6.
    S. Min, B. Lee, S. Yoon, Deep learning in bioinformatics. Brief. Bioinform. 18(5), 851–869 (2017)Google Scholar
  7. 7.
    L. Lu, Y. Zheng, G. Carneiro, L. Yang, Deep learning and convolutional neural networks for medical image computing, in Advances in Computer Vision and Pattern Recognition (Springer: New York, 2017)Google Scholar
  8. 8.
    Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)Google Scholar
  9. 9.
    V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in Proceedings of the 27th international conference on machine learning (ICML-10) (2010), pp. 807–814Google Scholar
  10. 10.
    K.H. Miaoa, J.H. Miaoa, Coronary heart disease diagnosis using deep neural networks. Int. J. Adv. Comput. Sci. Appl. 9(10), 1–8 (2018)Google Scholar
  11. 11.
    G.E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Tutorial, Deep Learning. Release 0.1, LISA Lab (University of Montreal, 2015)Google Scholar
  13. 13.
    A. Zhang, Z.C. Lipton, M. Li, A.J. Smola, Dive into Deep Learning. Unpublished draft. Retrieved, 3, 319 (2019)Google Scholar
  14. 14.
    A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado, J. Dean, A guide to deep learning in healthcare. Nat. Med. 25(1), 24–29 (2019)Google Scholar
  15. 15.
    G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A. Van Der Laak, C.I. Sánchez, A survey on deep learning in medical image analysis. Med. Image Anal., 42, 60–88 (2017)Google Scholar
  16. 16.
    S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)Google Scholar
  17. 17.
    A.S. Bist, A survey of deep learning algorithms for malware detection. Int. J. Comput. Sci. Inf. Secur. (IJCSIS), 16(3) (2018)Google Scholar
  18. 18.
    I. Tobore, J. Li, L. Yuhang, Y. Al-Handarish, A. Kandwal, Z. Nie, L. Wang, Deep learning intervention for health care challenges: some biomedical domain considerations. JMIR mHealth uHealth 7(8), e11966 (2019)Google Scholar
  19. 19.
    A. Kandwal, Z. Nie, L. Wang, Deep learning intervention for health care challenges: some biomedical domain considerationsGoogle Scholar
  20. 20.
    A. Jonsson, Deep reinforcement learning in medicine. Kidney Dis. 5(1), 18–22 (2019)Google Scholar
  21. 21.
    A. Rajkomar, E. Oren, K. Chen, A.M. Dai, N. Hajaj, M. Hardt, M. Hardt, P.J. Liu, X. Liu, M. Sun, Sundberg, P, Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 1(1), 18 (2018)Google Scholar
  22. 22.
    O. Gottesman, F. Johansson, M. Komorowski, A. Faisal, D. Sontag, F. Doshi-Velez, L.A. Celi, Guidelines for reinforcement learning in healthcare. Nat. Med. 25(1), 16–18 (2019)Google Scholar
  23. 23.
    C. Wu, C. Luo, N. Xiong, W. Zhang, T.H. Kim, A greedy deep learning method for medical disease analysis. IEEE Access 6, 20021–20030 (2018)Google Scholar
  24. 24.
    T. Davenport, R. Kalakota, The potential for artificial intelligence in healthcare. Future Healthc. J. 6(2), 94–98 (2019)Google Scholar
  25. 25.
    M. Fatima, M. Pasha, Survey of machine learning algorithms for disease diagnostic. J. Intell. Learn. Syst. Appl. 9(01), 1 (2017)Google Scholar
  26. 26.
    A. Rajkomar, J. Dean, I. Kohane, Machine learning in medicine. N. Engl. J. Med. 380(14), 1347–1358 (2019)Google Scholar
  27. 27.
    F. Wang, A. Preininger, AI in health: state of the art, challenges, and future directions. Yearb. Med. Inform. 28(01), 016–026 (2019)Google Scholar
  28. 28.
    C. Krittanawong, K.W. Johnson, R.S. Rosenson, Z. Wang, M. Aydar, U. Baber, J.K. Mun, W.W. Tang, J.L. Halperin, S.M. Narayan, Deep learning for cardiovascular medicine: a practical primer. Eur. Heart J. (2019)Google Scholar
  29. 29.
    A. Kassam, N. Kassam, Artificial intelligence in healthcare: a Canadian context, in Healthcare Management Forum, Vol. 33(1). (Sage Publications, Sage: Los Angeles, 2019), pp. 5–9Google Scholar
  30. 30.
    J. Mason, S. Visintini, T. Quay, An overview of clinical applications of 3-D printing and bioprinting, in CADTH Issues in Emerging Health Technologies (Canadian Agency for Drugs and Technologies in Health, 2019)Google Scholar
  31. 31.
    A.S. Lundervold, A. Lundervold, An overview of deep learning in medical imaging focusing on MRI. Z. für Med. Phys. 29(2), 102–127 (2019)Google Scholar
  32. 32.
    J. Gao, Q. Jiang, B. Zhou, D. Chen, Convolutional neural networks for computer-aided detection or diagnosis in medical image analysis: an overview. Math. Biosci. Eng. 16(6), 6536 (2019)MathSciNetGoogle Scholar
  33. 33.
    K. Munir, H. Elahi, A. Ayub, F. Frezza, A. Rizzi, Cancer diagnosis using deep learning: a bibliographic review. Cancers 11(9), 1235 (2019)Google Scholar
  34. 34.
    K. Suzuki, Overview of deep learning in medical imaging. Radiol. Phys. Technol. 10(3), 257–273 (2017)Google Scholar
  35. 35.
    S.K. Zhou, H. Greenspan, D. Shen, (Eds.) Deep Learning for Medical Image Analysis (Academic Press, 2017)Google Scholar
  36. 36.
    S. Bacchi, L. Oakden-Rayner, T. Zerner, T. Kleinig, S. Patel, J. Jannes, Deep learning natural language processing successfully predicts the cerebrovascular cause of transient ischemic attack-like presentations. Stroke 50(3), 758–760 (2019)Google Scholar
  37. 37.
    Q. Chen, J. Du, S. Kim, W.J. Wilbur, Z. Lu, Combining rich features and deep learning for finding similar sentences in electronic medical records, in Proceedings of the BioCreative/OHNLP Challenge, 5–8 (2018)Google Scholar
  38. 38.
    R. Miotto, F. Wang, S. Wang, X. Jiang, J.T. Dudley, Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinform. 19(6), 1236–1246 (2018)Google Scholar
  39. 39.
    O. Faust, Y. Hagiwara, T.J. Hong, O.S. Lih, U.R. Acharya, Deep learning for healthcare applications based on physiological signals: a review. Comput. Methods Progr. Biomed. 161, 1–13 (2018)Google Scholar
  40. 40.
    K.H. Yu, A.L. Beam, I.S. Kohane, Artificial intelligence in healthcare. Nat. Biomed. Eng. 2(10), 719–731 (2018)Google Scholar
  41. 41.
    M. Alloghani, T. Baker, D. Al-Jumeily, A. Hussain, J. Mustafina, A.J. Aljaaf, Prospects of machine and deep learning in analysis of vital signs for the improvement of healthcare services, in Nature-Inspired Computation in Data Mining and Machine Learning  (Springer, Cham, 2020), pp. 113–136Google Scholar
  42. 42.
    H. Lee, S. Yune, M. Mansouri, M. Kim, S.H. Tajmir, C.E. Guerrier, S.A. Ebert, S.R. Pomerantz, J.M. Kamalian, R.G. Gonzalez, An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat. Biomed. Eng., 3(3), 173 (2019)Google Scholar
  43. 43.
    M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)MathSciNetzbMATHGoogle Scholar
  44. 44.
    S.G. Finlayson, J.D. Bowers, J. Ito, J.L. Zittrain, A.L. Beam, I.S. Kohane, Adversarial attacks on medical machine learning. Science 363(6433), 1287–1289 (2019)Google Scholar
  45. 45.
    B. Sanchez-Lengeling, A. Aspuru-Guzik, Inverse molecular design using machine learning: generative models for matter engineering. Science 361(6400), 360–365 (2018)Google Scholar
  46. 46.
    A. Mincholé, B. Rodriguez, Artificial intelligence for the electrocardiogram. Nat. Med. 25(1), 22–23 (2019)Google Scholar
  47. 47.
    D.S. Kermany, M. Goldbaum, W. Cai, C.C. Valentim, H. Liang, S.L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5), 1122–1131 (2018)Google Scholar
  48. 48.
    M. Koch, Artificial intelligence is becoming natural. Cell 173(3), 533 (2018)Google Scholar
  49. 49.
    B. Norgeot, B.S. Glicksberg, L. Trupin, D. Lituiev, M. Gianfrancesco, B. Oskotsky, G. Schmajuk, J. Yazdany, A.J. Butte, Assessment of a deep learning model based on electronic health record data to forecast clinical outcomes in patients with rheumatoid arthritis. JAMA Netw. Open 2(3), e190606–e190606 (2019)Google Scholar
  50. 50.
    F. Wang, L.P. Casalino, D. Khullar, Deep learning in medicine—promise, progress, and challenges. JAMA Intern. Med. 179(3), 293–294 (2019)Google Scholar
  51. 51.
    A.D. Trister, The tipping point for deep learning in oncology. JAMA Oncol. 5(10), 1429–1430 (2019)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  • Utku Kose
    • 1
    Email author
  • Omer Deperlioglu
    • 2
  • Jafar Alzubi
    • 3
  • Bogdan Patrut
    • 4
  1. 1.Department of Computer EngineeringSüleyman Demirel UniversityIspartaTurkey
  2. 2.Department of Computer TechnologiesAfyon Kocatepe UniversityAfyonkarahisarTurkey
  3. 3.Faculty of EngineeringAl-Balqa Applied UniversityAl-SaltJordan
  4. 4.Faculty of Computer ScienceAlexandru Ioan Cuza University of IasiIasiRomania

Personalised recommendations