Advertisement

Construction of Identity Based Signcryption Using Learning with Rounding

  • Dharminder Dharminder
  • Dheerendra MishraEmail author
Conference paper
  • 61 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1241)

Abstract

Current technology, quantum computing is a big threat to the security based on essentially number-theoretic cryptographic constructions. Shor’s algorithm forces one to understanding and working on quantum resistant problems. Therefore, we need a reliable communication especially which can provide both confidentiality and authenticity in a single step. This paper presents an identity based signcryption using learning with rounding (IBSCLR) scheme in a random lattice. The security is based on the worst-case hardness of learning with rounding (LWR) problem. This scheme uses short signature and ensures security in widely acceptable standard model. Furthermore, the scheme illustrates security in the quantum era and can be applied to practical application vehicular, crowdsourcing, internet of things based structure in the modern computation world.

Keywords

Signcryption Security Authentication Discrete Gaussian Learning with rounding 

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_28CrossRefzbMATHGoogle Scholar
  2. 2.
    Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_2CrossRefGoogle Scholar
  3. 3.
    Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13013-7_29CrossRefGoogle Scholar
  4. 4.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theor. (TOCT) 6(3), 13 (2014)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dharminder, D., Mishra, D.: Understanding signcryption security in standard model. Secur. Priv., e105 (2020)Google Scholar
  7. 7.
    Dharminder, D., Obaidat, M.S., Mishra, D., Das, A.K.: SFEEC: provably secure signcryption-based big data security framework for energy-efficient computing environment. IEEE Syst. J., 1–9 (2020)Google Scholar
  8. 8.
    Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_3CrossRefGoogle Scholar
  9. 9.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)Google Scholar
  10. 10.
    Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052231CrossRefGoogle Scholar
  11. 11.
    Gupta, D.S., Biswas, G.: Design of lattice-based ELGamal encryption and signature schemes using SIS problem. Trans. Emerging Telecommun. Technol. 29(6), e3255 (2018)CrossRefGoogle Scholar
  12. 12.
    Jin, Z., Wen, Q., Du, H.: An improved semantically-secure identity-based signcryption scheme in the standard model. Comput. Electr. Eng. 36(3), 545–552 (2010)CrossRefGoogle Scholar
  13. 13.
    Li, F., Takagi, T.: Secure identity-based signcryption in the standard model. Math. Comput. Modell. 57(11–12), 2685–2694 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Malone-Lee, J.: Identity-based signcryption. IACR Cryptology ePrint Archive 2002, 98 (2002)Google Scholar
  15. 15.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 333–342. ACM (2009)Google Scholar
  17. 17.
    Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11659-4_12CrossRefzbMATHGoogle Scholar
  18. 18.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 34 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Selvi, S.S.D., Vivek, S.S., Vinayagamurthy, D., Rangan, C.P.: ID based signcryption scheme in standard model. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu, Y. (eds.) ProvSec 2012. LNCS, vol. 7496, pp. 35–52. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33272-2_4CrossRefGoogle Scholar
  20. 20.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_7CrossRefGoogle Scholar
  22. 22.
    Wei, G., Shao, J., Xiang, Y., Zhu, P., Lu, R.: Obtain confidentiality or/and authenticity in big data by id-based generalized signcryption. Inf. Sci. 318, 111–122 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yu, Y., Yang, B., Sun, Y., Zhu, S.L.: Identity based signcryption scheme without random oracles. Comput. Standards Interfaces 31(1), 56–62 (2009)CrossRefGoogle Scholar
  24. 24.
    Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 719–751. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_24CrossRefGoogle Scholar
  25. 25.
    Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) \(<<\) cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052234CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of MathematicsThe LNM Institute of Information TechnologyJaipurIndia

Personalised recommendations