Advertisement

Exploiting Topic Modelling to Classify Sentiment from Lyrics

  • Maibam Debina DeviEmail author
  • Navanath Saharia
Conference paper
  • 48 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1241)

Abstract

With the increase in an enormous amount of data, text analysis has become a challenging task. Techniques like classification, categorization, summarization and topic modeling have become part of every natural language processing activity. In this experiment, we aim to perform sentiment class extraction from lyrics using topic modeling techniques. We have use generative statistical model Latent Dirichlet Allocation (LDA) which is also the most widely explored model in topic modeling and another nonparametric bayesian based approach model Heuristic Dirichlet Process (HDP) to extract the topics from 150 lyrics samples of Manipuri songs written using Roman script. We observe this unsupervised techniques, able to obtain the underlying different sentiment class of lyrics in the form of topics.

Keywords

Lyrics Sentiment classification Topic modelling Latent Dirichlet allocation Hierarchical Dirichlet process 

References

  1. 1.
    Bashri, M.F., Kusumaningrum, R.: Sentiment analysis using latent Dirichlet allocation and topic polarity wordcloud visualization. In: 2017 5th International Conference on Information and Communication Technology (ICoIC7), pp. 1–5. IEEE (2017)Google Scholar
  2. 2.
    Blei, D.: Cos 597c: Bayesian nonparametrics. Lecture Notes in Priceton University (2007). http://www.cs.princeton.edu/courses/archive/fall07/cos597C/scribe/20070921.pdf
  3. 3.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)zbMATHGoogle Scholar
  4. 4.
    Chen, B.: Latent topic modelling of word co-occurence information for spoken document retrieval. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3961–3964. IEEE (2009)Google Scholar
  5. 5.
    Dakshina, K., Sridhar, R.: LDA based emotion recognition from lyrics. In: Kumar Kundu, M., Mohapatra, D.P., Konar, A., Chakraborty, A. (eds.) Advanced Computing, Networking and Informatics - Volume 1. SIST, vol. 27, pp. 187–194. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07353-8_22CrossRefGoogle Scholar
  6. 6.
    Ding, W., Song, X., Guo, L., Xiong, Z., Hu, X.: A novel hybrid HDP-LDA model for sentiment analysis. In: 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 1, pp. 329–336. IEEE (2013)Google Scholar
  7. 7.
    Eickhoff, M., Neuss, N.: Topic modelling methodology: its use in information systems and other managerial disciplines (2017)Google Scholar
  8. 8.
    Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse Process. 25(2–3), 259–284 (1998)CrossRefGoogle Scholar
  9. 9.
    Landauer, T.K., McNamara, D.S., Dennis, S., Kintsch, W.: Handbook of Latent Semantic Analysis. Psychology Press, London (2013)Google Scholar
  10. 10.
    Laoh, E., Surjandari, I., Febirautami, L.R.: Indonesians’ song lyrics topic modelling using latent Dirichlet allocation. In: 2018 5th International Conference on Information Science and Control Engineering (ICISCE), pp. 270–274 (2018)Google Scholar
  11. 11.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788 (1999)CrossRefGoogle Scholar
  12. 12.
    Lin, J.: Divergence measures based on the shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mayer, R., Neumayer, R., Rauber, A.: Rhyme and style features for musical genre classification by song lyrics. In: ISMIR, pp. 337–342 (2008)Google Scholar
  14. 14.
    Mimno, D., Wallach, H.M., Talley, E., Leenders, M., McCallum, A.: Optimizing semantic coherence in topic models. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 262–272. Association for Computational Linguistics (2011)Google Scholar
  15. 15.
    Nikolenko, S.I., Koltcov, S., Koltsova, O.: Topic modelling for qualitative studies. J. Inf. Sci. 43(1), 88–102 (2017)CrossRefGoogle Scholar
  16. 16.
    Onan, A., Korukoglu, S., Bulut, H.: LDA-based topic modelling in text sentiment classification: an empirical analysis. Int. J. Comput. Linguist. Appl. 7(1), 101–119 (2016)Google Scholar
  17. 17.
    Poria, S., Chaturvedi, I., Cambria, E., Bisio, F.: Sentic LDA: improving on LDA with semantic similarity for aspect-based sentiment analysis. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 4465–4473. IEEE (2016)Google Scholar
  18. 18.
    Röder, M., Both, A., Hinneburg, A.: Exploring the space of topic coherence measures. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, pp. 399–408 (2015)Google Scholar
  19. 19.
    Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Sharing clusters among related groups: hierarchical Dirichlet processes. In: Advances in Neural Information Processing Systems, pp. 1385–1392 (2005)Google Scholar
  20. 20.
    Tian, K., Revelle, M., Poshyvanyk, D.: Using latent Dirichlet allocation for automatic categorization of software. In: 2009 6th IEEE International Working Conference on Mining Software Repositories, pp. 163–166. IEEE (2009)Google Scholar
  21. 21.
    Tong, Z., Zhang, H.: A text mining research based on LDA topic modelling. In: International Conference on Computer Science, Engineering and Information Technology, pp. 201–210 (2016)Google Scholar
  22. 22.
    Van Zaanen, M., Kanters, P.: Automatic mood classification using TF* IDF based on lyrics. In: ISMIR, pp. 75–80 (2010)Google Scholar
  23. 23.
    Wang, C., Paisley, J., Blei, D.: Online variational inference for the hierarchical Dirichlet process. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 752–760 (2011)Google Scholar
  24. 24.
    Zhao, W., et al.: A heuristic approach to determine an appropriate number of topics in topic modeling. In: BMC Bioinformatics, vol. 16, p. S8. BioMed Central (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.IIIT ManipurImphalIndia

Personalised recommendations