Advertisement

Solving Quadratic Assignment Problem Using Crow Search Algorithm in Accelerated Systems

  • Manoj KumarEmail author
  • Pinaki Mitra
Conference paper
  • 42 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1241)

Abstract

The Quadratic Assignment problem (QAP) is one of the most studied optimization problem. Although many direct and heuristic methods are used to give the solution of QAP for small size instances in reasonable time but it takes huge time for large size instances. So, solving QAP in massively parallel architecture like Graphics processing unit (GPU) by applying a noble metaheuristics Crow Search Algorithm (CSA) can further optimize the solution and their execution time. So, in this paper we analyse the QAP in accelerated systems by using CSA metaheuristics and CSA performs approximately 10 times faster on GPU as compared to CPU.

Keywords

Metaheuristics QAP GPU CSA 

References

  1. 1.
    Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176, 657–690 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Commander, C.W.: A survey of the quadratic assignment problem, with applications (2005)Google Scholar
  3. 3.
    Abdelkafi, O., Idoumghar, L., Lepagnot, J.: A survey on the metaheuristics applied to QAP for the graphics processing units. Parallel Process. Lett. 26(03), 1650013 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB- a quadratic assignment problem library. J. Global Optim. 13, 391–403 (1997).  https://doi.org/10.1023/A:1008293323270MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Wong, M.L., Wong, T.T., Fok, K.-L.: Parallel evolutionary algorithms on graphics processing unit. In: 2005 IEEE Congress Evolutionary Computation (2015)Google Scholar
  6. 6.
    Yu, Q., Chen, C., Pan, Z.: Parallel genetic algorithms on programmable graphics hardware. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 1051–1059. Springer, Heidelberg (2005).  https://doi.org/10.1007/11539902_134CrossRefGoogle Scholar
  7. 7.
    Zhu, W.: A study of parallel evolution strategy: pattern search on a GPU computing platform. In: Proceedings of the First ACM/SIGEVO (2009)Google Scholar
  8. 8.
    Tsutsui, S., Fujimoto, N.: Solving quadratic assignment problems by genetic algorithms with GPU computation: a case study. ACM (2009)Google Scholar
  9. 9.
    Van Luong, T., Melab, N., Talbi, E.: Parallel hybrid evolutionary algorithms on GPU. In: 2010 IEEE Congress Evolutionary Computation (CEC)Google Scholar
  10. 10.
    Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. J. Comput. Struct. 169, 112 (2016)CrossRefGoogle Scholar
  11. 11.
    Vajda, A.: Multi-core and many-core processor architectures. In: Programming Many-Core Chips. Springer, Boston (2011).  https://doi.org/10.1007/978-1-4419-9739-5_2
  12. 12.
    Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley (2009)Google Scholar
  13. 13.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1, 53–66 (1997)CrossRefGoogle Scholar
  14. 14.
    Pointcheval, D.: A new identification scheme based on the perceptrons problem. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 319–328. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-49264-X_26CrossRefGoogle Scholar
  15. 15.
    Lutton, E., Vehel, J.L.: Holder functions and deception of genetic algorithms. IEEE Trans. Evol. Comput. 2(2), 56–71 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIIT GuwahatiGuwahatiIndia

Personalised recommendations