Towards a UMLS-Integratable Vietnamese Medical Terminology

  • The Quyen NgoEmail author
  • My Linh Ha
  • Thi Minh Huyen Nguyen
  • Thi Mai Huong Hoang
  • Viet Hung Nguyen
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1215)


Lexical resources play an essential role in text processing. In this paper, we present our work on the construction of a Vietnamese medical terminology integratable into the UMLS multilingual metathesaurus (Unified Medical Language System). The construction of the Vietnamese medical terminology is done by collecting terms from existing lexical sources on one hand, and by extracting terms from Vietnamese medical corpora on the other. In order to draw maximum benefit from the varied sources and corpora that can be collected, we have developed a set of tools adapted to the specificities of each of those resources, based upon proven techniques. This allows us to acquire consequent amounts of good quality mono- and bilingual medical terminology data.


UMLS Vietnamese medical terminology 


  1. 1.
    Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32, D267–D270 (2004). Scholar
  2. 2.
    Bond, F., Chang, Z., Uchimoto, K.: Extracting bilingual terms from mainly monolingual data. In: 14th Annual Meeting of the Association for Natural Language Processing, Tokyo, Japan (2008)Google Scholar
  3. 3.
    Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. Comput. Linguist. 16(1), 22–29 (1990). Scholar
  4. 4.
    Conrado, M., Pardo, T., Rezende, S.: A machine learning approach to automatic term extraction using a rich feature set. In: Proceedings of the 2013 NAACL HLT Student Research Workshop, pp. 16–23. Association for Computational Linguistics, Atlanta, Georgia (June 2013).
  5. 5.
    Daille, B.: Conceptual structuring through term variations. In: Proceedings of the ACL 2003 Workshop on Multiword Expressions: Analysis, Acquisition, and Treatment, no. 1, pp. 9–16 (2003)Google Scholar
  6. 6.
    Demner-Fushman, D., Rogers, W., Aronson, A.: Metamap lite: an evaluation of a new java implementation of metamap. J. Am. Med. Inform. Assoc.: JAMIA 24, 841–844 (2017). Scholar
  7. 7.
    Forrey, A.W., et al.: Logical observation identifier names and codes (LOINC) database: a public use set of codes and names for electronic reporting of clinical laboratory test results. Clin. Chem. 42(1), 81–90 (1996)CrossRefGoogle Scholar
  8. 8.
    Franzi, K., Ananiadou, S.: The C/NC value domain independent method for multi-word term extraction. J. Nat. Lang. Process. 6, 145–180 (1999)CrossRefGoogle Scholar
  9. 9.
    Friedman, C.: Towards a comprehensive medical language processing system: methods and issues. In: Proceedings: A Conference of the American Medical Informatics Association/AMIA Annual Fall Symposium. AMIA Fall Symposium, vol. 4, pp. 595–599 (February 1997)Google Scholar
  10. 10.
    Hliaoutakis, A., Zervanou, K., Petrakis, E.: The AMTEx approach in the medical document indexing and retrieval application. Data Knowl. Eng. 68, 380–392 (2009). Scholar
  11. 11.
    Justeson, J.S., Katz, S.M.: Technical terminology: some linguistic properties and an algorithm for identification in text. Nat. Lang. Eng. 1(1), 9–27 (1995). Scholar
  12. 12.
    Karën, F., Gilles, A., Bretonnel, C.K.: Amazon mechanical turk: gold mine or coal mine? Comput. Linguist. 37(2), 413–420 (2011). Scholar
  13. 13.
    Keating, M., Furberg, R.D.: A methodological framework for crowdsourcing in research. In: Proceedings of the 2013 Federal Committee on Statistical Methodology (FCSM) Research Conference (2013)Google Scholar
  14. 14.
    Korkontzelos, I., Klapaftis, I.P., Manandhar, S.: Reviewing and evaluating automatic term recognition techniques. In: Nordström, B., Ranta, A. (eds.) GoTAL 2008. LNCS (LNAI), vol. 5221, pp. 248–259. Springer, Heidelberg (2008). Scholar
  15. 15.
    Lafourcade, M.: Making people play for lexical acquisition with the JeuxDeMots prototype. In: 7th International Symposium on Natural Language Processing, SNLP 2007, Pattaya, Chonburi, Thailand, p. 7 (December 2007).
  16. 16.
    Li, Y., et al.: Extracting medical knowledge from crowdsourced question answering website. IEEE Trans. Big Data 6, 1–1 (2016). Scholar
  17. 17.
    Liu, J., Morin, E., Saldarriaga, S.P.: Towards a unified framework for bilingual terminology extraction of single-word and multi-word terms. In: Proceedings of the 27th International Conference on Computational Linguistics (COLING) (2018)Google Scholar
  18. 18.
    Macken, L., Lefever, E., Hoste, V.: TExSIS: bilingual terminology extraction from parallel corpora using chunk-based alignment. Terminology 19, 1–30 (2013). Scholar
  19. 19.
    Matsuo, Y., Ishizuka, M.: Keyword extraction from a single document using word co-occurrence statistical information. Int. J. Artif. Intell. Tools 13, 157–169 (2003)CrossRefGoogle Scholar
  20. 20.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS 2013, vol. 2, pp. 3111–3119. Curran Associates Inc., USA (2013).
  21. 21.
    Organization, W.H.: International Statistical Classification of Diseases and Related Health Problems. Tenth Revision, vol. 2 (2010).
  22. 22.
    Paniagua, J., Korzynski, P.: Social Media Crowdsourcing, pp. 1–5. Springer, New York, New York, NY (2017)Google Scholar
  23. 23.
    Patrick, R., Julien, G., Christian, L., Antoine, G.: Automatic medical encoding with SNOMED categories. BMC Med. Inform. Decis. Mak. 8, S6 (2008)CrossRefGoogle Scholar
  24. 24.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24(5), 513–523 (1988). Scholar
  25. 25.
    Savova, G., et al.: Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J. Am. Med. Inform. Assoc.: JAMIA 17, 507–13 (2010). Scholar
  26. 26.
    Soysal, E., et al.: CLAMP - a toolkit for efficiently building customized clinical natural language processing pipelines. J. Am. Med. Inform. Assoc. 25, ocx132 (2017). Scholar
  27. 27.
    Trieu, N.Q., Song, P.: Medical Encyclopedia of Vietnam. Medical Publishing House One Member Company Limited, Ha Noi (2011)Google Scholar
  28. 28.
    Wang, A., Hoang, C.D.V., Kan, M.Y.: Perspectives on crowdsourcing annotations for natural language processing. Lang. Resour. Eval. 47(1), 9–31 (2013)CrossRefGoogle Scholar
  29. 29.
    Yang, W., Yan, J., Lepage, Y.: Extraction of bilingual technical terms for Chinese-Japanese patent translation. In: Proceedings of the NAACL Student Research Workshop, pp. 81–87. Association for Computational Linguistics, San Diego (June 2016).
  30. 30.
    Zhang, Z., Iria, J., Brewster, C., Ciravegna, F.: A comparative evaluation of term recognition algorithms. In: LREC 2008 (2008).

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • The Quyen Ngo
    • 1
    Email author
  • My Linh Ha
    • 1
  • Thi Minh Huyen Nguyen
    • 1
  • Thi Mai Huong Hoang
    • 1
  • Viet Hung Nguyen
    • 1
  1. 1.VNU University of ScienceHanoiVietnam

Personalised recommendations