Electrospinning Nanofibers

  • Shaoyang MaEmail author
  • Tao Ye
Part of the Progress in Optical Science and Photonics book series (POSP, volume 9)


With the rapid development of human technology, we are continuously facing new problems and challenges. On the one hand are the limited natural resources, and on the other hand are the increasing demands for convenient lifestyle. It is not a good idea to sacrifice one aspect to satisfy the other, but we should seek a balance between sustainable development and the comfortable living concept. Thus, it becomes a very crucial task to explore the low-cost, large-scale, and environmentally friendly fabrication methods for wide applications. Electrospinning is a top-down method in which polymeric or melt components are drawn out from a solution system onto a collector by electrostatic force. In comparison with other methods, including drawing, template synthesis, chemical vapor deposition, and so on, electrospinning offers some attractive features. One of the most important advantages is its industrial scalability, which makes it possible to directly transfer the results from laboratory research to the industry. In general, the unique advantages of electrospun nanostructures, including high spatial interconnectivity, high porosity, and large surface-to-volume ratio, make it a promising fabrication method in a wide range of applications. This chapter covers aspects of information relating to electrospinning nanofibers, including the materials for nanofiber fabrication, processing mechanism and parameters of electrospinning techniques, special electrospinning techniques, and potential applications of electrospun nanofibers.


Electrospinning techniques Electrospun nanofibers Materials parameters Applications 


  1. M. Baniasad, J. Huang, Z. Xu, S. Moreno, X. Yang, J. Chang, M.A. Quevedo-Lopez, M. Naraghi, M. Minary-Jolandan, A.C.S. Appl, Mater. Interfaces 7, 5358 (2015)CrossRefGoogle Scholar
  2. P.K. Baumgarten, J. Colloid Interf. Sci. 36, 75 (1971)ADSCrossRefGoogle Scholar
  3. T.D. Brown, P.D. Dalton, D.W. Hutmacher, Prog. Polym. Sci. 56, 116 (2016)CrossRefGoogle Scholar
  4. C.L. Casper, J.S. Stephens, N.G. Tassi, D.B. Chase, J.F. Rabolt, Macromolecules 37, 573 (2004)ADSCrossRefGoogle Scholar
  5. S. Chuangchote, T. Sagawa, S. Yoshikawa, Appl. Phys. Lett. 93, 033310 (2008)ADSCrossRefGoogle Scholar
  6. A. Formhals, US Patent 1975504 (1943)Google Scholar
  7. E. Formo, M.S. Yavuz, E.P. Lee, L. Lane, Y.N. Xia, J. Mater. Chem. 19, 3878 (2009)CrossRefGoogle Scholar
  8. Y.X. Gu, D.R. Chen, X.L. Jiao, F.F. Liu, J. Mater. Chem. 17, 1769 (2007)CrossRefGoogle Scholar
  9. Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003)CrossRefGoogle Scholar
  10. T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, P. Supaphol, Eur. Polym. J. 41, 409 (2005)CrossRefGoogle Scholar
  11. Y.W. Ju, G.R. Choi, H.R. Jung, C. Kim, K.S. Yang, W.J. Lee, J. Electrochem. Soc. 154, A192 (2007)CrossRefGoogle Scholar
  12. P. Katta, M. Alessandro, R.D. Ramsier, G.G. Chase, Nano Lett. 4, 2215 (2004)ADSCrossRefGoogle Scholar
  13. J.Y. Ke, H.J. Chu, Y.H. Hsu, C.K. Lee, Proc. SPIE 10164 (2017)Google Scholar
  14. C. Kim, J. Power Sources 142, 382 (2005)ADSCrossRefGoogle Scholar
  15. C. Kim, Y.O. Choi, W.J. Lee, K.S. Yang, Electrochim. Acta 50, 883 (2004)CrossRefGoogle Scholar
  16. H.J. Kim, Y.S. Kim, M.H. Seo, S.M. Choi, W.B. Kim, Electrochem. Commun. 11, 446 (2009)CrossRefGoogle Scholar
  17. L. Kong, G.R. Ziegier, Food Hydrocoll. 38, 220 (2014)CrossRefGoogle Scholar
  18. D. Li, Y. Xia, Adv. Mater. 16, 1151 (2004a)CrossRefGoogle Scholar
  19. D. Li, Y. Xia, Nano Lett. 4, 933 (2004b)ADSCrossRefGoogle Scholar
  20. M.Y. Li, G.Y. Han, B.S. Yang, Electrochem. Commun. 10, 880 (2008)CrossRefGoogle Scholar
  21. C. Liu, P.C. Hsu, H.W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, Y. Cui, Nat. Comm. 6, 6205 (2015)ADSCrossRefGoogle Scholar
  22. S. Ma, T. Ye, T. Zhang, Z. Wang, K. Li, M. Chen, J. Zhang, Z. Wang, S. Ramakrishna, L. Wei, Adv. Mater. Technol. 3, 1800033 (2018)CrossRefGoogle Scholar
  23. S. Ma, T. Ye, T. Wu, Z. Wang, Z. Wang, S. Ramakrishna, C. Vijila, L. Wei, Sol. Energy Mater. Sol. Cells 191, 389 (2019)CrossRefGoogle Scholar
  24. P.L. McEuen, Nature 393, 6680 (1998)CrossRefGoogle Scholar
  25. C. Mit-uppatham, M. Nithitanakul, P. Supaphol, Macromol. Chem. Phys. 205, 2327 (2004)CrossRefGoogle Scholar
  26. M.P. Prabhakaran, E. Vatankhah, S. Ramakrishna, Biotechnol. Bioeng. 110, 2775 (2013)CrossRefGoogle Scholar
  27. D.H. Reneker, A.L. Yarin, Polymer 49, 2387 (2008)CrossRefGoogle Scholar
  28. K.M. Sawicka, A.K. Prasad, P.I. Gouma, Sens. Lett. 3, 31 (2005)CrossRefGoogle Scholar
  29. L. Wannatong, A. Sirivat, P. Supaphol, Polym. Int. 53, 1851 (2004)CrossRefGoogle Scholar
  30. H. Wu, D.D. Lin, W. Pan, Appl. Phys. Lett. 89, 133125 (2006)ADSCrossRefGoogle Scholar
  31. W.Y. Wu, J.M. Ting, P.J. Huang, Nanoscale Res. Lett. 4, 513 (2009)ADSCrossRefGoogle Scholar
  32. C.Y. Xu, R. Inai, M. Kotaki, S. Ramakrishna, Biomaterials 25, 877 (2004)CrossRefGoogle Scholar
  33. Y. Yang, T. Xia, F. Chen, W. Wei, C. Liu, S. He, X. Li, Mol. Pharm. 9, 48 (2012)CrossRefGoogle Scholar
  34. M. Zamani, M.P. Prabhakaran, E.S. Thian, S. Ramakrishna, Int. J. Pharm. 473, 134 (2014)CrossRefGoogle Scholar
  35. X. Zhang, V. Thavasi, S.G. Mhaisakar, S. Ramakrishna, Nanoscale 4, 1707 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Key Laboratory of All Optical Network and Advanced Telecommunication Network of Ministry of EducationInstitute of Lightwave Technology, Beijing Jiaotong UniversityBeijingChina
  2. 2.Materials Research Institute, Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations