Advertisement

Specialty Fiber Grating-Based Acoustic Sensing

  • Wenjun NiEmail author
  • Perry Ping Shum
  • Ping Lu
  • Xin Fu
  • Yiyang Luo
  • Ran Xia
  • Lei Wei
Chapter
  • 97 Downloads
Part of the Progress in Optical Science and Photonics book series (POSP, volume 9)

Abstract

Aiming at the high sensitivity, high precision, small size, and low cost acoustic detection requirements, a novel fiber sensor for curvature and acoustic wave measurement based on a thin core ultra-long period fiber grating (TC-ULPFG) has been proposed in this chapter. By tracking the power variation of different resonant wavelength caused by TC-ULPFG, high curvature sensitivity of 97.77 dB/m−1 is achieved, to best of our knowledge, which is highest than other structures at the same measurement range. Thus, the desired curvature property of the TC-ULPFG is used for acoustic measurement. The polyethylene terephthalate (PET) film is selected as a transducer, on which TC-ULPFG is tightly pasted. The acoustic pressure sensitivity of 1.89 V/Pa is two orders higher than other structures based on the diaphragm transducer, and the noise-limited minimum detectable pressure is 1.94 mPa/Hz1/2 at 200 Hz. In addition, the frequency fluctuations are nearly ±0.4 dB from 70 to 200 Hz and ±0.2 dB from 1 to 3 kHz, respectively. Therefore, the proposed optical fiber acoustic sensor (OFAS) has a flat frequency response in relatively lower frequency. The TC-ULPFG shows many advantages including high sensitivities of curvature, high acoustic pressure sensitivity, easy fabrication, simple structure, and low cost.

Keywords

Thin core ultra-long period fiber grating (TC-ULPFG) Optical fiber acoustic sensor (OFSA) Flat frequency response 

References

  1. E.M. Dianov, S.A. Vasiliev, A.S. Kurkov, O.I. Medvedkov, V.N. Protopopov, In-fiber Mach-Zehnder interferometer based on a pair of long-period gratings, in 22nd European Conference on Optical Communication(ECOC’96). (Academic, 1996), pp. 65–68Google Scholar
  2. C. Fu, X. Zhong, C. Liao, Y. Wang, Y. Wang, J. Tang, S. Liu, Q. Wang, Thin-core-fiber-based long-period fiber grating for high-sensitivity refractive index measurement. IEEE Photonics J. 7(6), 1–8 (2015)CrossRefGoogle Scholar
  3. J.O. Gaudron, F. Surre, T. Sun, K.T.V. Grattan, LPG-based optical fibre sensor for acoustic wave detection. Sens. Actuators A Phys. 173(1), 97–101 (2012)CrossRefGoogle Scholar
  4. Y. Gong, T. Zhao, Y. Rao, Y. Wu, All-fiber curvature sensor based on multimode interference. IEEE Photon. Technol. Lett. 23(11), 679–681 (2011)ADSCrossRefGoogle Scholar
  5. C. Hu, Z. Yu, A. Wang, An all fiber-optic multi-parameter structure health monitoring system. Opt. Express 24(18), 20287–20296 (2016)ADSCrossRefGoogle Scholar
  6. J. Kang, X. Dong, Y. Zhu, S. Jin, S. Zhuang, A fiber strain and vibration sensor based on high birefringence polarization maintaining fibers. Opt. Commun. 322, 105–108 (2014)ADSCrossRefGoogle Scholar
  7. Y. Li, X. Wang, X. Bao, Sensitive acoustic vibration sensor using single-mode fiber tapers. Appl. Opt. 50(13), 1873–1878 (2011)ADSCrossRefGoogle Scholar
  8. F. Li, Y. Liu, L. Wang, Z. Zhao, Investigation on the response of fused taper couplers to ultrasonic wave. Appl. Opt. 54(23), 6986–6993 (2015)ADSCrossRefGoogle Scholar
  9. L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, J. Zhang, Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm. IEEE Sens. J. 16(9), 3054–3058 (2016a)ADSCrossRefGoogle Scholar
  10. L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, Q. Yao, UV adhesive diaphragm-based FPI Sensor for very-low-frequency acoustic sensing. IEEE Photon. J. 8(1), 1–9 (2016b)Google Scholar
  11. C. Lyu, Y. Liu, C. Wu, Wide bandwidth dual-frequency ultrasound measurements based on fiber laser sensing technology. Appl. Opt. 55(19), 5057–5062 (2016)ADSCrossRefGoogle Scholar
  12. J. Ma, H. Xuan, H.L. Ho, W. Jin, Y. Yang, S. Fan, Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm. IEEE Photon. Technol. Lett. 10(25), 932–935 (2013)ADSCrossRefGoogle Scholar
  13. J. Ma, Y. Yu, W. Jin, Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias. Opt. Express 23(22), 29268–29278 (2015)ADSCrossRefGoogle Scholar
  14. W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, J. Zhang, Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating. IEEE Photonics J. 8(4), 1–11 (2016)CrossRefGoogle Scholar
  15. D. Pawar, C.N. Rao, R.K. Choubey, S.N. Kale, Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections. Appl. Phys. Lett. 108(4), 041912 (2016)ADSCrossRefGoogle Scholar
  16. H. Tazawa, T. Kanie, M. Katayama, Fiber-optic coupler based refractive index sensor and its application to biosensing. Appl. Phys. Lett. 91(11), 113901 (2007)ADSCrossRefGoogle Scholar
  17. F. Tian, J. Kanka, B. Zou, K.S. Chiang, H. Du, Long-period gratings inscribed in photonic crystal fiber by symmetric CO2 laser irradiation. Opt. Express 21(11), 13208–13218 (2013)ADSCrossRefGoogle Scholar
  18. Z. Wang, Z. Liu, Design and experiment of data acquisition system of submerged buoy. Ocean Technol. 32(4), 6–10 (2013)MathSciNetGoogle Scholar
  19. S. Wang, P. Lu, L. Zhang, D. Liu, J. Zhang, Optical fiber acoustic sensor based on nonstandard fused coupler and aluminum foil. IEEE Sens. J. 14(7), 2293–2298 (2014a)ADSCrossRefGoogle Scholar
  20. X. Wang, L. Jin, J. Li, Y. Ran, B. Guan, Microfiber interferometric acoustic transducers. Opt. Express 22(7), 8126–8135 (2014b)ADSCrossRefGoogle Scholar
  21. B. Wang, W. Zhang, Z. Bai, L. Wang, L. Zhang, Q. Zhou, L. Chen, T. Yan, CO2-laser-induced long period fiber gratings in few mode fibers. IEEE Photon. Technol. Lett. 27(2), 145–148 (2015)ADSCrossRefGoogle Scholar
  22. S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, Y. Chen, An infrasound sensor based on extrinsic fiber-optic Fabry-Perot interferometer structure. IEEE Photon. Technol. Lett. 28(11), 1264–1267 (2016)ADSCrossRefGoogle Scholar
  23. B. Xu, Y. Li, M. Sun, Z. Zhang, X. Dong, Z. Zhang, S. Jin, Acoustic vibration sensor based on nonadiabatic tapered fibers. Opt. Lett. 37(22), 4768–4770 (2012)ADSCrossRefGoogle Scholar
  24. F. Xu, J. Shi, K. Gong, H. Li, R. Hui, B. Yu, Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm. Opt. Lett. 39(10), 2838–2840 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Wenjun Ni
    • 1
    Email author
  • Perry Ping Shum
    • 1
  • Ping Lu
    • 2
  • Xin Fu
    • 2
  • Yiyang Luo
    • 1
  • Ran Xia
    • 1
  • Lei Wei
    • 1
  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Huazhong University of Science and TechnologyWuhanChina

Personalised recommendations