Brillouin Fiber Laser Sensors

  • Yi LiuEmail author
  • Zhaomin Tong
  • Yao Shang
  • Bingchen Han
  • Qing Bai
  • Rongrong Guo
  • Pengfei Chen
Part of the Progress in Optical Science and Photonics book series (POSP, volume 9)


A single longitudinal mode (SLM) Brillouin fiber laser (BFL) with cascaded ring (CR) Fabry–Pérot resonator, a SLM triple ring (TR) BFL with a saturable absorber ring (SAR) resonator and a stable multiwavelength (MW) SLM dual ring BFL (MW-SLM-DRBFL) are proposed and demonstrated. By optimizing the CR length of the single-mode fiber cavity at 100 m (or 50 m) and 10 m, stable SLM operation is obtained with 0.41 kHz (or 3.23 kHz). TR-BFL with approximately 65-Hz linewidth and 185 linewidth-reduction ratio is composed of a 1-km-long single-mode fiber (SMF) ring, a 100-m-long SMF ring, and an SAR with 8-m-long unpumped Erbium-doped fiber (UP-EDF), respectively. 7 stable SLM lasing wavelengths with DR configuration of 100 and 10 m length SMF are obtained with 0.084 nm wavelength spacing and 15 dB average optical signal-to-noise ratio (OSNR) through the cascaded stimulated Brillouin scattering (cSBS) and four-wave mixing (FWM). A MW SLM Brillouin–Erbium fiber laser (BEFL) sensor with ultrahigh resolution is proposed and demonstrated and Iezzi et al. proposed and investigated experimentally a distributed higher order Stokes SBS temperature fiber sensor. The one short common cavity of MW-SLM-BEFL with 50 m of SMF as the fiber under test (FUT) and 100 m of SMF as the reference realize 3.104 MHz/°C sensitivity and approximately 10−6 °C ultrahigh resolution in the short term of the third-order Stokes wavelength. While maintaining a fairly normal spatial resolution over a few kilometers of sensing length using time gating technology, sensitivity is increased by several folds to over 4 MHz/°C.


Stimulated Brillouin Scattering Cascaded stimulated Brillouin Scattering Brillouin fiber laser Single longitudinal mode Saturable absorber ring Multiwavelength Dual ring Optical signal to noise ratio Four wave mixing Brillouin–Erbium fiber laser Cascaded ring Fabry–Pérot resonator Triple ring High-order stokes wavelength Brillouin fiber laser sensor Temperature sensor Distributed temperature fiber sensor 


  1. M.N. Alahbabi, Y.T. Cho, T.P. Newson, J. Opt. Soc. Am. B 22, 1321–1324 (2005)ADSCrossRefGoogle Scholar
  2. G.H. Ames, J. M. Maguire, IEEE Sens. J 7, 557–561 (2007)Google Scholar
  3. X. Bao, J. Dhliwayo, N. Heron, J. Lightw Technol. 13, 1340–1348 (1995)ADSCrossRefGoogle Scholar
  4. X. Bao, L. Chen, Sensors (Basel) 11, 4152–4187 (2011)CrossRefGoogle Scholar
  5. X. Chen, L. Xian, K. Ogusu, H. Li, Appl. Phys. B 107, 791–794 (2012)ADSCrossRefGoogle Scholar
  6. D. Culverhouse, F. Farahi, C. Pannell, D. Jackson, Electron. Lett. 25, 913–915 (1989)ADSCrossRefGoogle Scholar
  7. A. Debut, S. Randoux, J. Zemmouri, Phys. Rev. A 62, 023803 (2000)ADSCrossRefGoogle Scholar
  8. Y. Dong, H. Zhang, L. Chen, X. Bao, Appl. Opt. 51, 1229–1235 (2012)ADSCrossRefGoogle Scholar
  9. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, S. Jiang, IEEE. Photon Technol. Lett. 18, 1813–1815 (2006)ADSCrossRefGoogle Scholar
  10. M.C. Gross, P.T. Callahan, T.R. Clark, D. Novak, R.B. Waterhouse, M.L. Dennis, Opt. Express 18, 13321–13330 (2010)ADSCrossRefGoogle Scholar
  11. K. Hotate, T. Hasegawa, IEICE Trans. Electron 83, 405–412 (2000)Google Scholar
  12. V.L. Iezzi, S. Loranger, R. Kashyap, Opt. Express 12, 32591–32601 (2017)Google Scholar
  13. K. Kalli, D. Culverhouse, D. Jackson, Opt. Lett. 16, 1538–1540 (1991)ADSCrossRefGoogle Scholar
  14. P.L. Kelley, in Nonlinear Optics, ed. By R.W. Boyd (Academic Press, Rochester, New York, 2008), p. 355Google Scholar
  15. D. Kersey et al., J. Lightw Technol. 15, 1442–1463 (1997)ADSCrossRefGoogle Scholar
  16. A. Kobyakov, M. Sauer, D. Chowdhury, Adv. Ont. Photonics 2, 1–59 (2009)Google Scholar
  17. T. Kurashima, T. Horiguchi, M. Tateda, Opt. Lett. 15, 1038–1040 (1990)ADSCrossRefGoogle Scholar
  18. S. Liu et al., Opt. Lett. 35, 835–837 (2010)ADSCrossRefGoogle Scholar
  19. Yi Liu, Mingjiang Zhang, J. Lightwave Technol. 35, 1744–1749 (2017)ADSCrossRefGoogle Scholar
  20. Y. Liu, J.L. Yu, W.R. Wang, IEEE Photon. Technol. Lett. 26, 169–172 (2013)ADSCrossRefGoogle Scholar
  21. Y. Liu, J.L. Yu, W.R. Wang, H.G. Pan, E.Z. Yang, IEEE Photon. Technol. Lett. 26, 169–172 (2014)ADSCrossRefGoogle Scholar
  22. Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, IEEE Photon. J. 7, 1 (2015a)Google Scholar
  23. Y. Liu, J.L. Yu, W.R. Wang, Opt. Rev. 22, 271–277 (2015b)Google Scholar
  24. W. Li, X. Bao, Y. Li, Opt. Express 16, 21616–21625 (2008)ADSCrossRefGoogle Scholar
  25. J. Li, H. Lee, K.J. Vahala, Nature Commun. 4, 1–7 (2013)ADSGoogle Scholar
  26. J. Mandal et al., IEEE Sens. J. 6, 986–995 (2006)ADSCrossRefGoogle Scholar
  27. N. Mohd Nasir, Z. Yusoff, M.H. Al-Mansoori, H.A. Abdul Rashid, P.K. Choudhury, Laser Phys. Lett. 5, 812–816 (2008)Google Scholar
  28. P.-A. Nicati, K. Toyama, H.J. Shaw, J. Lightw Technol. 13, 1445–1451 (1995)ADSCrossRefGoogle Scholar
  29. M. Nikles, L. Thevenaz, P.A. Robert, J. Lightw Technol. 15, 1842–1851 (1997)ADSCrossRefGoogle Scholar
  30. C.V. Raman, Indian J. Phys. 2, 387 (1982)Google Scholar
  31. Y.G. Shee, M.H. Al-Mansoori, A. Ismail, S. Hitam, M.A. Mahdi, Opt. Exp. 19, 1699–1706 (2011)ADSCrossRefGoogle Scholar
  32. Y. Shen, X. Zhang, K. Chen, J. Lightw Technol. 23, 1860–1865 (2005)ADSCrossRefGoogle Scholar
  33. K. Shimizu, T. Horiguchi, Y. Koyamada, J. Lightw Technol. 12, 730–736 (1994)ADSCrossRefGoogle Scholar
  34. S. Smith, F. Zarinetchi, S. Ezekiel, Opt. Lett. 16, 393–395 (1991)ADSCrossRefGoogle Scholar
  35. Y.J. Song, L. Zhan, S. Hu, Q.H. Ye, Y.X. Xia, I.E.E.E. Photon, Technol. Lett. 16, 2015–2017 (2004)CrossRefGoogle Scholar
  36. M.A. Soto, G. Bolognini, F.D. Pasquale, Opt. Let. 36, 232–234 (2011)ADSCrossRefGoogle Scholar
  37. V.V. Spirin, C.A. Lopez-Mercado, P. Megret, A.A. Fotiadi, Laser Phys. Lett. 9, 377 (2012)ADSCrossRefGoogle Scholar
  38. L. Stokes, M. Chodorow, H. Shaw, Opt. Lett. 7, 509–511 (1982)ADSCrossRefGoogle Scholar
  39. G. Wang, Opt. Lett. 38, 19–21 (2013)ADSCrossRefGoogle Scholar
  40. J.P.F. Wooler, B. Hodder, R.I. Crickmore, Meas. Sci. Technol. 18, 884 (2007)ADSCrossRefGoogle Scholar
  41. Z. Wu, L. Zhan, Q. Shen, J. Liu, X. Hu, P. Xiao, Opt. Lett. 36, 3837–3839 (2011)ADSCrossRefGoogle Scholar
  42. L. Xing, L. Zhan, S. Luo, Y. Xia, IEEE J. Quantum Electron. 44, 1133–1138 (2008)ADSCrossRefGoogle Scholar
  43. R. Xu, X. Zhang, IEEE Photon. J. 7, 1–8 (2015)Google Scholar
  44. X. Yang, S. Luo, Z. Chen, J.H. Ng, C. Lu, Opt. Commun. 271, 203–206 (2007)ADSCrossRefGoogle Scholar
  45. X.P. Yang, J.L. Gan, S.H. Xu, Z.M. Yang, Laser Phys. 23, 045104 (2013)ADSCrossRefGoogle Scholar
  46. J. Yong, L. Thévenaz, B. Kim, J. Lightw Technol. 21, 546–554 (2003)ADSCrossRefGoogle Scholar
  47. L.P. Yu, Y.Z. Liu, Z.Y. Dai, Adv. Laser and Optoelectron. 4, 26–30 (2006)Google Scholar
  48. L. Zhang, L. Zhan, M. Qin, Z. Wang, H. Luo, T. Wang, Opt. Lett. 40, 4404–4407 (2015a)ADSCrossRefGoogle Scholar
  49. L. Zhang, L. Zhan, M. Qin, Z. Zou, Z. Wang, and J. Liu, J. Opt. Soc. Amer. B, Opt. Phys. 32, 1113–1119 (2015b)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Yi Liu
    • 1
    • 2
    Email author
  • Zhaomin Tong
    • 3
    • 4
  • Yao Shang
    • 5
    • 6
  • Bingchen Han
    • 7
  • Qing Bai
    • 1
    • 2
  • Rongrong Guo
    • 1
    • 2
  • Pengfei Chen
    • 1
    • 2
  1. 1.Key Laboratory of Advanced Transducers and Intelligent Control SystemMinistry of Education and Shanxi ProvinceTaiyuanPeople’s Republic of China
  2. 2.College of Physics and OptoelectronicsInstitute of Optoelectronic Engineering, Taiyuan University of TechnologyTaiyuanPeople’s Republic of China
  3. 3.State Key Laboratory of Quantum Optics and Quantum Optics DevicesInstitute of Laser Spectroscopy, Shanxi UniversityTaiyuanChina
  4. 4.Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanPeople’s Republic of China
  5. 5.College of SoftwareTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  6. 6.Polytechnic Institute Taiyuan University of TechnologyTaiyuanPeople’s Republic of China
  7. 7.Department of PhysicsTaiyuan Normal UniversityShanxiPeople’s Republic of China

Personalised recommendations