Fiber-Shaped Energy-Storage Devices

  • Qichong ZhangEmail author
  • Bing He
  • Jiao Yang
  • Ping Man
  • Lei WeiEmail author
Part of the Progress in Optical Science and Photonics book series (POSP, volume 9)


With the rapid development of science and technology, portable and wearable electronic devices presented a prominent technological trend for future lifestyles and they have brought enormous convenience to our daily life. In order to realize the wearability of the whole equipment, it is necessary to develop matching high flexible, lightweight and small volume energy supply devices. The volume of planar flexible energy-storage device is too large to be integrated into the fabric, so it is difficult to give full play to the advantages of energy storage device. The fiber-shaped energy storage devices with their unique advantages of tiny volume, high flexibility and remarkable wearability have triggered wide attention. Thus, developing high-performance fiber-shaped energy storage devices is recognized as a promising strategy to address the above issues. This chapter discusses the design principles and device performance of fiber-shaped energy storage devices. In the first section, design principles of fiber-shaped energy storage devices with fiber electrode, electrolyte and device configurations are presented. In the next section, the development of fiber-shaped energy storage devices, including supercapacitors, nonaqueous and aqueous batteries, are comprehensively summarized, with particular emphasis on electrochemical and mechanical properties. The existing challenges and future directions are finally discussed to provide some useful insights from the viewpoint of practical applications.


Fiber-shaped energy storage device Supercapacitor Lithium-ion battery Lithium-sulfur battery Lithium-air battery Zinc-ion battery Aqueous battery Alkaline battery 


  1. D. Chen, K. Jiang, T. Huang, G. Shen, Adv. Mater. 190, 2019 (1806)Google Scholar
  2. X. Chen, L. Qiu, J. Ren, G. Guan, H. Lin, Z. Zhang, P. Chen, Y. Wang, H. Peng, Adv. Mater. 6436, 25 (2013)Google Scholar
  3. W.G. Chong, J.-Q. Huang, Z.-L. Xu, X. Qin, X. Wang, J.-K. Kim, Adv. Funct. Mater. 1604815, 27 (2017)Google Scholar
  4. X. Fang, W. Weng, J. Ren, H. Peng, Adv. Mater. 491, 28 (2016)Google Scholar
  5. C. Guan, W. Zhao, Y. Hu, Q. Ke, X. Li, H. Zhang, J. Wang, Adv. Energy Mater. 1601034, 6 (2016)Google Scholar
  6. Q. Guan, Y. Li, X. Bi, J. Yang, J. Zhou, X. Li, J. Cheng, Z. Wang, B. Wang, J. Lu, Adv. Energy Mater. 1901434, 9 (2019)Google Scholar
  7. Z. Guo, Y. Zhao, Y. Ding, X. Dong, L. Chen, J. Cao, C. Wang, Y. Xia, H. Peng, Y. Wang, Chem 348, 3 (2017)Google Scholar
  8. B. He, Q. Zhang, P. Man, Z. Zhou, C. Li, Q. Li, L. Xie, X. Wang, H. Pang, Y. Yao, Nano Energy 103935, 64 (2019)Google Scholar
  9. T. Hoshide, Y. Zheng, J. Hou, Z. Wang, Q. Li, Z. Zhao, R. Ma, T. Sasaki, F. Geng, Nano Lett. 3543, 17 (2017)Google Scholar
  10. L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Nat. Commun. 3754, 5 (2014)Google Scholar
  11. H. Li, Z. Liu, G. Liang, Y. Huang, Y. Huang, M. Zhu, Z. Pei, Q. Xue, Z. Tang, Y. Wang, B. Li, C. Zhi, ACS Nano 3140, 12 (2018)Google Scholar
  12. B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Nano Lett. 3005, 12 (2012)Google Scholar
  13. R. Liu, Y. Liu, J. Chen, Q. Kang, L. Wang, W. Zhou, Z. Huang, X. Lin, Y. Li, P. Li, X. Feng, G. Wu, Y. Ma, W. Huang, Nano Energy 325, 33 (2017)Google Scholar
  14. X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong, Y. Li, Adv. Mater. 267, 25 (2013)ADSGoogle Scholar
  15. F. Mo, G. Liang, Z. Huang, H. Li, D. Wang, C. Zhi, Adv Mater. 1902151 (2019)Google Scholar
  16. J. Ren, Y. Zhang, W. Bai, X. Chen, Z. Zhang, X. Fang, W. Weng, Y. Wang, H. Peng, Angew. Chem. Int. Ed. 7864, 53 (2014)Google Scholar
  17. L. Wang, X. Fu, J. He, X. Shi, T. Chen, P. Chen, B. Wang, H. Peng, Adv. Mater. 190, 2019 (1971)Google Scholar
  18. Y. Wang, C. Chen, H. Xie, T. Gao, Y. Yao, G. Pastel, X. Han, Y. Li, J. Zhao, K.K. Fu, L. Hu, Adv. Funct. Mater. 1703140, 27 (2017)Google Scholar
  19. W. Weng, Q. Sun, Y. Zhang, H. Lin, J. Ren, X. Lu, M. Wang, H. Peng, Nano Lett. 3432, 14 (2014)Google Scholar
  20. W. Weng, P. Chen, S. He, X. Sun, H. Peng, Angew. Chem. Int. Ed. 6140, 55 (2016)Google Scholar
  21. X. Xu, S. Xie, Y. Zhang, H. Peng, Angew. Chem. Int. Ed. 2, 58 (2019)Google Scholar
  22. D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen, Nat. Nanotech. 555, 9 (2014)Google Scholar
  23. D. Yu, Q. Qian, L. Wei, W. Jiang, K. Goh, J. Wei, J. Zhang, Y. Chen, Chem. Soc. Rev. 647, 44 (2015)Google Scholar
  24. N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang, M.-Q. Zhu, Adv. Energy Mater. 1501458, 6 (2016)Google Scholar
  25. A. M. Zamarayeva, A. E. Ostfeld, M. Wang, J. K. Duey, I. Deckman, B. P. Lechêne, G. Davies, D. A. Steingart, A. C. Arias, Sci. Adv. e1602051, 3 (2017)Google Scholar
  26. Y. Zeng, Y. Meng, Z. Lai, X. Zhang, M. Yu, P. Fang, M. Wu, Y. Tong, X. Lu, Adv. Mater. 1702698, 29 (2017)Google Scholar
  27. S. Zhai, H. E. Karahan, C. Wang, Z. Pei, L. Wei, Y. Chen, Adv Mater. 1902387 (2019)Google Scholar
  28. Q. Zhang, P. Man, B. He, C. Li, Q. Li, Z. Pan, Z. Wang, J. Yang, Z. Wang, Z. Zhou, X. Lu, Z. Niu, Y. Yao, L. Wei, Nano Energy 104212 (2019)Google Scholar
  29. Y. Zhang, W. Bai, X. Cheng, J. Ren, W. Weng, P. Chen, X. Fang, Z. Zhang, H. Peng, Angew. Chem. Int. Ed. 14564, 53 (2014)Google Scholar
  30. Y. Zhang, L. Wang, Z. Guo, Y. Xu, Y. Wang, H. Peng, Angew. Chem. Int. Ed. 4487, 55 (2016a)Google Scholar
  31. Y. Zhang, Y. Wang, L. Wang, C.-M. Lo, Y. Zhao, Y. Jiao, G. Zheng, H. Peng, J. Mater. Chem. A 9002, 4 (2016b)Google Scholar
  32. Q. Zhang, X. Wang, Z. Pan, J. Sun, J. Zhao, J. Zhang, C. Zhang, L. Tang, J. Luo, B. Song, Z. Zhang, W. Lu, Q. Li, Y. Zhang, Y. Yao, Nano Lett. 2719, 17 (2017a)Google Scholar
  33. Q. Zhang, J. Sun, Z. Pan, J. Zhang, J. Zhao, X. Wang, C. Zhang, Y. Yao, W. Lu, Q. Li, Y. Zhang, Z. Zhang, Nano Energy 219, 39 (2017b)Google Scholar
  34. Y. Zhang, Y. Jiao, L. Lu, L. Wang, T. Chen, H. Peng, Angew. Chem. Int. Ed. 13741, 56 (2017c)Google Scholar
  35. Q. Zhang, Z. Zhou, Z. Pan, J. Sun, B. He, Q. Li, T. Zhang, J. Zhao, L. Tang, Z. Zhang, L. Wei, Y. Yao, Adv Sci. 1801462, 5 (2018)Google Scholar
  36. Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun, Z. Zhou, B. He, P. Man, L. Xie, L. Kang, X. Wang, J. Yang, T. Zhang, P.P. Shum, Q. Li, Y. Yao, L. Wei, Nano Lett. 4035, 19 (2019)ADSGoogle Scholar
  37. B. Zheng, T. Huang, L. Kou, X. Zhao, K. Gopalsamy, C. Gao, J. Mater. Chem. A 9736, 2 (2014)Google Scholar
  38. Z. Zhou, Q. Zhang, J. Sun, B. He, J. Guo, Q. Li, C. Li, L. Xie, Y. Yao, ACS Nano 9333, 12 (2018)Google Scholar
  39. J. Zhou, X. Li, C. Yang, Y. Li, K. Guo, J. Cheng, D. Yuan, C. Song, J. Lu, B. Wang, Adv. Mater. 1804439, 31 (2019)Google Scholar
  40. Y.H. Zhu, X.Y. Yang, T. Liu, X.B. Zhang, Adv. Mater. 190, 2019 (1961)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Division of Advanced NanomaterialsSuzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of SciencesSuzhouChina

Personalised recommendations