In-Fiber Breakup

  • Jing ZhangEmail author
  • Zhe Wang
  • Zhixun Wang
Part of the Progress in Optical Science and Photonics book series (POSP, volume 9)


In recent years, multifunctional multimaterial fibers based on the thermal drawing process have made considerable development, which enables various practical fiber devices with optoelectronics, photonics, acoustics, biomedicine, and energy harvesting functionalities. The future development of multifunctional fibers requests highly integrated ingenious in-fiber structures and excellent material properties. To meet these challenges, the technologies of using fluidic instabilities induced in-fiber breakup phenomena are presented, allowing us a way to modify the traditional axially invariant in-fiber structure and to achieve in-fiber material engineering. The post-drawing thermal treatment can soften the selective part of the functional fibers, induce perturbations on the interface between materials, and eventually break the continuous fiber inner structures to fabricate in-fiber functional structures. The in-fiber breakup process enables the fabrication of in-fiber structured particles by a variety of materials with a wide range of processing temperatures from 2400 to 400 K and material viscosity ratio of 10 orders. Moreover, the in-fiber breakup process provides a useful tool to form fiber-based functional devices. On the other hand, the fundamental understanding of the in-fiber breakup phenomena shall be contributing to optimizing the fiber thermal drawing process. By selecting suitable materials and suppressing the in-fiber breakup phenomena, the designed structure of the fiber preforms will be preserved in maximum. This chapter covers aspects of (1) the introduction and theory of thermal treatment induced in-fiber fluidic instabilities, (2) the in-fiber fabrications based on in-fiber breakup process, (3) potential applications of in-fiber breakup process, and (4) the future research directions.


Thermal treatment In-fiber breakup Capillary instability Structured particles Material engineering Optoelectronic fiber device 


  1. O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, M. Bayindir, Adv. Opt. Mater. 2(7), 618–625 (2014)CrossRefGoogle Scholar
  2. S. Chandrasekhar, Clarendon (Oxford, 1961)Google Scholar
  3. R. de Gennes, F. Brochard-Wyart, D. Quere, B. Widom, Phys. Today 57(12), 63 (2004)Google Scholar
  4. D. Deng, J.-C. Nave, X. Liang, S. Johnson, Y. Fink, Opt. Express 19(17), 16273–16290 (2011)ADSCrossRefGoogle Scholar
  5. D.S. Deng, N.D. Orf, A.F. Abouraddy, A.M. Stolyarov, J.D. Joannopoulos, H.A. Stone, Y. Fink, Nano Lett. 8(12), 4265–4269 (2008)ADSCrossRefGoogle Scholar
  6. D.S. Deng, N.D. Orf, S. Danto, A.F. Abouraddy, J.D. Joannopoulos, Y. Fink, Appl. Phys. Lett. 96(2) (2010)Google Scholar
  7. M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, U.J. Gibson, Opt. Mater. Express 7(5), 1589–1597 (2017)ADSCrossRefGoogle Scholar
  8. T. Frolov, W.C. Carter, M. Asta, Nano Lett. 14(6), 3577–3581 (2014)ADSCrossRefGoogle Scholar
  9. A. Gumennik, E.C. Levy, B. Grena, C. Hou, M. Rein, A.F. Abouraddy, J.D. Joannopoulos, Y. Fink, Proc. Natl. Acad. Sci. USA 114(28), 7240–7245 (2017)ADSCrossRefGoogle Scholar
  10. A. Gumennik, L. Wei, G. Lestoquoy, A.M. Stolyarov, X. Jia, P.H. Rekemeyer, M.J. Smith, X. Liang, B.J.-B. Grena, S.G. Johnson, Nat. Commun. 4, 2216 (2013)ADSCrossRefGoogle Scholar
  11. N. Healy, S. Mailis, N.M. Bulgakova, P.J. Sazio, T.D. Day, J.R. Sparks, H.Y. Cheng, J.V. Badding, A.C. Peacock, Nat. Mater. 13(12), 1122–1127 (2014)ADSCrossRefGoogle Scholar
  12. K. Kao, G.A. Hockham, Dielectric-fibre surface waveguides for optical frequencies, in Proceedings of the Institution of Electrical Engineers, IET (1966)Google Scholar
  13. J.J. Kaufman, Multifunctional, Multimaterial Particle Fabrication Via an In-Fiber Fluid Instability. Electronic Theses and Dissertations, University of Central Florida, 4803 (2014)Google Scholar
  14. J.J. Kaufman, R. Ottman, G. Tao, S. Shabahang, E.H. Banaei, X. Liang, S.G. Johnson, Y. Fink, R. Chakrabarti, A.F. Abouraddy, Proc. Natl. Acad. Sci. USA 110(39), 15549–15554 (2013)ADSCrossRefGoogle Scholar
  15. J.J. Kaufman, F. Tan, R. Ottman, R. Chakrabarti and A.F. Abouraddy, Scalable Production of Digitally Designed Multifunctional Polymeric Particles by In-Fiber Fluid Instabilities. Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), Sydney, Optical Society of America (2016)Google Scholar
  16. J.J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D.S. Deng, X. Liang, S.G. Johnson, Y. Fink, A.F. Abouraddy, Nature 487(7408), 463 (2012)ADSCrossRefGoogle Scholar
  17. T. Khudiyev, O. Tobail, M. Bayindir, Sci. Rep. 4, 4864 (2014)ADSCrossRefGoogle Scholar
  18. X. Liang, D. Deng, J.-C. Nave, S.G. Johnson, J. Fluid Mech. 683, 235–262 (2011)ADSMathSciNetCrossRefGoogle Scholar
  19. N.N. Mansour, T.S. Lundgren, Phys. Fluids A 2(7), 1141–1144 (1990)ADSCrossRefGoogle Scholar
  20. J.-H. Park, L. Gu, G. Von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Nat. Mater. 8(4), 331 (2009)ADSCrossRefGoogle Scholar
  21. L. Rayleigh, Proc. London. Math. Soc. 1(1), 4–13 (1878)MathSciNetCrossRefGoogle Scholar
  22. L. Rayleigh, Proc. R. Soc. Lond. 29(196–199), 71–97 (1879)Google Scholar
  23. L. Rayleigh, Lond., Edinb., Dubl. Phil. Mag. J. Sci. 14(87): 184–186 (1882)Google Scholar
  24. S. Shabahang, J. Kaufman, D. Deng, A. Abouraddy, Appl. Phys. Lett. 99(16), 161909 (2011)ADSCrossRefGoogle Scholar
  25. F.H. Suhailin, N. Healy, M. Sumetsky, J. Ballato, A. Dibbs, U. Gibson, A.C. Peacock, Kerr nonlinear switching in a core-shell microspherical resonator fabricated from the silicon fiber platform (Science and Innovations, Optical Society of America, CLEO, 2015)CrossRefGoogle Scholar
  26. G. Tao, J.J. Kaufman, S. Shabahang, N.R. Rezvani, S.V. Sukhov, J.D. Joannopoulos, Y. Fink, A. Dogariu, A.F. Abouraddy, Proc. Natl. Acad. Sci. USA 113(25), 6839 (2016)ADSCrossRefGoogle Scholar
  27. S. Tomotika, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 150(870), 322–337 (1935)ADSGoogle Scholar
  28. T. Van Buuren, L. Dinh, L. Chase, W. Siekhaus, L.J. Terminello, Phys. Rev. Lett. 80(17), 3803 (1998)ADSCrossRefGoogle Scholar
  29. N. Vukovic, N. Healy, F. Suhailin, P. Mehta, T. Day, J. Badding, A. Peacock, Sci. Rep. 3, 2885 (2013)ADSCrossRefGoogle Scholar
  30. P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, G. Brambilla, Opt. Lett. 37(4), 728–730 (2012)ADSCrossRefGoogle Scholar
  31. J. Ward, O. Benson, Laser Photonics Rev. 5(4), 553–570 (2011)ADSCrossRefGoogle Scholar
  32. A.L. Watts, N. Singh, C.G. Poulton, E.C. Magi, I.V. Kabakova, D.D. Hudson, B.J. Eggleton, JOSA B 30(12), 3249–3253 (2013)ADSCrossRefGoogle Scholar
  33. L. Wei, C. Hou, E. Levy, G. Lestoquoy, A. Gumennik, A.F. Abouraddy, J.D. Joannopoulos, Y. Fink, Adv. Mater. 29(1), 1603033 (2017)CrossRefGoogle Scholar
  34. B. Xu, M. Li, F. Wang, S.G. Johnson, Y. Fink, D. Deng, Phys. Rev. Fluids 4(7), 073902 (2019)ADSCrossRefGoogle Scholar
  35. J. Zhang, K. Li, T. Zhang, P.J.S. Buenconsejo, M. Chen, Z. Wang, M. Zhang, Z. Wang, L. Wei, Adv. Func. Mater. 27(43), 1703245 (2017)CrossRefGoogle Scholar
  36. J. Zhang, Z. Wang, Z. Wang, T. Zhang, L. Wei, ACS Appl. Mater. Interfaces 11(48), 45330–45337 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations