Advertisement

DNA Computing Based Multi-objective Genetic Algorithm

  • Jili TaoEmail author
  • Ridong Zhang
  • Yong Zhu
Chapter
  • 25 Downloads

Abstract

In this chapter, DNA computing based non-dominated sorting genetic algorithm is described for solving the multi-objective optimization problems. First, the inconsistent multi-objective functions are converted into Pareto rank value and density information of solution distribution. Then, the archive is introduced to keep the Pareto front individuals by Pareto sorting, and the maintaining scheme is executed to maintain the evenness of individual distribution in terms of individual crowding measuring.

References

  1. 1.
    Deb, K. 2001. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons.Google Scholar
  2. 2.
    Schaffer, J.D. 1985. Multiple Optimization with vector evaluated genetic algorithms. In International conference on genetic algorithms.Google Scholar
  3. 3.
    Knowles, J.D., and D.W. Corne. 2000. Approximating the nondominated front using the pareto archived evolution strategy, vol. 8.Google Scholar
  4. 4.
    Zitzler, E., K. Deb, and Thiele, L. 2000. Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation 8 (2): 173–195.Google Scholar
  5. 5.
    Deb, K., and D. Kalyanmoy. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6 (2): 182–197.Google Scholar
  6. 6.
    Konak, A., Coit D.W., and Smith, A.E. 2006. Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety 91 (9): 992–1007.Google Scholar
  7. 7.
    Rudolph, G. 1998. On a multi-objective evolutionary algorithm and its convergence to the Pareto set. In IEEE World Congress on IEEE International Conference on Evolutionary Computation.Google Scholar
  8. 8.
    Rudolph, G.N., and A. Agapie. 2000. Convergence properties of some multi-objective evolutionary algorithms. In Congress on Evolutionary Computation.Google Scholar
  9. 9.
    Laumanns, M., et al. 2002. Combining convergence and diversity in evolutionary multiobjective optimization. Evolutionary Computation 10 (3): 263–282.Google Scholar
  10. 10.
    Zitzler, E., et al. 2003. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on evolutionary computation 7 (2): 117–132.Google Scholar
  11. 11.
    Fonseca, C.M., and P.J.J.E.C. Fleming. 2014. An overview of evolutionary algorithms in multiobjective optimization. 3 (1): 1–16.Google Scholar
  12. 12.
    Goldberg, D.E. 1989. Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston, MA.Google Scholar
  13. 13.
    Knowles, J., and D. Corne. 1999. The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In Proceedings of Congress on Evolutionary Computation.Google Scholar
  14. 14.
    Tao, J., Q. Fan., and Chen X, et al. 2012. Constraint multi-objective automated synthesis for CMOS operational amplifier. Neurocomputing 98: 108–113.Google Scholar
  15. 15.
    Michalewicz Z. 2013. Genetic algorithms + data structures = evolution programs[M]. Springer Science & Business Media.Google Scholar
  16. 16.
    Ren, L., et al. 2010. Emergence of self-learning fuzzy systems by a new virus DNA–based evolutionary algorithm. International Journal of Intelligent Systems 18 (3): 339–354.Google Scholar
  17. 17.
    Jan, H.Y., C.L. Lin, and Hwang, T.S. 2006. Self‐organized PID control design using DNA computing approach. Journal of the Chinese Institute of Engineers 29 (2): 251–261.Google Scholar
  18. 18.
    Tao, J., and N. Wang. 2007. DNA computing based RNA genetic algorithm with applications in parameter estimation of chemical engineering processes. Computers Chemical Engineering31 (12): 1602–1618.Google Scholar
  19. 19.
    Liepins, G.E. 1992. Global convergence of genetic algorithms. Proceedings of SPIE - The International Society for Optical Engineering 1766: 61–65.Google Scholar
  20. 20.
    Fonseca, C.M. and P.J. Fleming 2002. Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example. IEEE Transactions on Systems, Man Cybernetics, Part A 28 (1): 38–47.Google Scholar
  21. 21.
    Tan, K.C., Y.J. Yang, and T.H. Lee. 2006. A distributed cooperative coevolutionary algorithm for multiobjective optimization. IEEE Transactions on Evolutionary Computation 10 (5): 527–549.Google Scholar
  22. 22.
    Mkaouer, W., M, Kessentini., and Shaout A, et al. 2015. Many-objective software remodularization using NSGA-III. ACM Transactions on Software Engineering and Methodology (TOSEM) 24 (3): 1–45.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Information Science and EngineeringNingboTech UniversityNingboChina
  2. 2.The Belt and Road Information Research InstituteHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations