Advertisement

ICPES 2019 pp 59-73 | Cite as

Robust Least Mean Logarithmic Square Control of Multifunctional PV Battery Grid Tied System

  • Mukul ChankayaEmail author
  • Ikhlaq Hussain
  • Aijaz Ahmad
Conference paper
  • 9 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 669)

Abstract

This paper describes the control of grid-tied PV-Battery system using robust least mean logarithmic square (RLMLS) algorithm with bidirectional converter control. The proposed control provides faster control and batter controlling capabilities than conventional control over sporadic nature of photovoltaic (PV). The battery current control and DC voltage control provided by the bidirectional converter. The presented system operates satisfactorily under variable power mode i.e. varying load and insolation and peak power demand mode. The results of MATLAB simulation are satisfactory according to IEEE519 standards.

Keywords

Robust least mean logarithmic square (RLMLS) Grid-tied Photovoltaic (PV) Battery 

References

  1. 1.
    Obi M, Bass R (2016) Trends and challenges of grid-connected photovoltaic systems—A review. Renew Sustain Energy Rev 58:1082–1094CrossRefGoogle Scholar
  2. 2.
    Hasan R, Mekhilef S, Seyedmahmoudian M, Horan B (2017) Grid-connected isolated PV microinverters: a review. Renew Sustain Energy Rev 67:1065–1080CrossRefGoogle Scholar
  3. 3.
    Barnes AK, Balda JC, Stewart CM (2012) Selection of converter topologies for distributed energy resources. In: 2012 Twenty-seventh annual IEEE application of power electronics conference exposition, pp 1418–1423Google Scholar
  4. 4.
    Singh AK, Hussain I, Singh B (2018) Double-stage three-phase grid-integrated solar PV system with fast zero attracting normalized least mean fourth based adaptive control. IEEE Trans Ind Electron 65(5):3921–3931CrossRefGoogle Scholar
  5. 5.
    Karami N, Moubayed N, Outbib R (2017) General review and classification of different MPPT Techniques. Renew Sustain Energy Rev 68:1–18Google Scholar
  6. 6.
    Ponnaluri S, Linhofer GO, Steinke JK, Steimer PK (2008) Comparison of single and two stage topologies for interface of BESS or fuel cell system using the ABB standard power electronics building blocks, p 9Google Scholar
  7. 7.
    Singh B, Chandra A, Al-haddad K. Power quality problems and mitigation techniques. WileyGoogle Scholar
  8. 8.
    Pradhan S, Hussain I, Singh B, Panigrahi BK (2017) Modified VSS-LMS-based adaptive control for improving the performance of a single-stage PV-integrated grid system. IET Sci Measure Technol 11(4):388–399CrossRefGoogle Scholar
  9. 9.
    Albert TR, Abusalem H, Juniper MD (1991) Experimental results: detection and tracking of low SNR sinusoids using real-time LMS and RLS lattice adaptive line enhancers. In: 1991 International conference on acoustics, speech, and signal processing, ICASSP-91. IEEE, pp 1857–1860Google Scholar
  10. 10.
    Kazemi R, Farsi A, Ghaed MH, Karimi-Ghartemani M (2008) Detection and extraction of periodic noises in audio and biomedical signals using Kalman filter. Sig Process 88(8):2114–2121CrossRefGoogle Scholar
  11. 11.
    Ding H, Soon Y, Koh SN, Yeo CK (2009) A spectral filtering method based on hybrid wiener filters for speech enhancement. Speech Commun 51(3):259–267CrossRefGoogle Scholar
  12. 12.
    Widrow B, Hoff ME (1960) Adaptive switching circuits. In: IRE WESCON convention record 1960, vol 4, no 1, pp 96–104Google Scholar
  13. 13.
    Vaseghi SV (2008) Advanced digital signal processing and noise reduction. WileyGoogle Scholar
  14. 14.
    Paulo SD (2008) Adaptive filtering algorithms and practical implementation. In: The international series in engineering and computer science, pp 23–50Google Scholar
  15. 15.
    Chulajata T, Kwon HM, Min KY (2000) Adaptive antenna array with no phase calibration for CDMA reverse link. In: 52nd 2000 vehicular technology conference. IEEE-VTS Fall VTC 2000, vol 1. IEEE, pp 127–134Google Scholar
  16. 16.
    Mayyas K, Aboulnasr T (1997) Leaky LMS algorithm: MSE analysis for Gaussian data. IEEE Trans Sig Process 45(4):927–934Google Scholar
  17. 17.
    Im S, Powers EJ (1997) A block LMS algorithm for third-order frequency-domain Volterra filters. IEEE Sig Process Lett 4(3):75–78CrossRefGoogle Scholar
  18. 18.
    Xiong K, Wang S (2019) Robust least mean logarithmic square adaptive filtering algorithms. J Franklin Inst 356(1):654–674MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kwong RH, Johnston EW (1992) A variable step size LMS algorithm. IEEE Trans Sig Process 40(7):1633–1642Google Scholar
  20. 20.
    Chern SJ, Horng JC, Wong KM (1995) The performance of the hybrid LMS adaptive algorithm. Sig Process 44(1):67–88CrossRefGoogle Scholar
  21. 21.
    Beniwal N, Hussain I, Singh B (2017) Hybrid VSS–LMS–LMF based adaptive control of SPV-DSTATCOM system under distorted grid conditions. IET Renew Power Gener 12(3):311–322CrossRefGoogle Scholar
  22. 22.
    Bermejo JF, Fernández JFG, Polo FO, Márquez AC (2019) A review of the use of artificial neural network models for energy and reliability prediction. A study of the solar PV, hydraulic and wind energy sources. Appl Sci (Switzerland) 9Google Scholar
  23. 23.
    Saxena N, Hussain I, Singh B, Vyas AL (2018) Implementation of a grid-integrated PV-battery system for residential and electrical vehicle applications. IEEE Trans Ind Electron 65(8):6592–6601CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentNIT SrinagarSrinagarIndia
  2. 2.Electrical Engineering DepartmentKashmir UniversitySrinagarIndia

Personalised recommendations